【題目】如圖,在平面直角坐標(biāo)系中,四邊形為正方形,已知點、,點、在第二象限內(nèi).
(1)點的坐標(biāo)___________;
(2)將正方形以每秒個單位的速度沿軸向右平移秒,若存在某一時刻,使在第一象限內(nèi)點、兩點的對應(yīng)點、正好落在某反比例函數(shù)的圖象上,請求出此時的值以及這個反比例函數(shù)的解析式;
(3)在(2)的情況下,問是否存在軸上的點和反比例函數(shù)圖象上的點,使得以、、、四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點、的坐標(biāo);若不存在,請說明理由.
【答案】(1)點坐標(biāo)為;(2),;(3)存在,,或,或,
【解析】
(1)證明△DFA≌△AEB(AAS),則DF=AE=3,BE=AF=1,即可求解;
(2)t秒后,點D′(7+2t,3)、B′(3+2t,1),則k=(7+2t)×3=(3+2t)×1,即可求解;
(3)分為平行四邊形的一條邊時和為平行四邊形對角線時兩種情況,分別求解即可.
解:(1)過點、分別作軸、軸交于點、,
,,,
又,,,,,
點坐標(biāo)為;
(2)秒后,點、,
則,解得:,則,
(3)存在,理由:
設(shè):點,點,,
①在第一象限,且為平行四邊形的一條邊時,圖示平行四邊形,點向左平移個單位、向上平移個單位得到點,
同理點向左平移個單位、向上平移個單位為得到點,即:,,,
解得:,,,
故點、點;
②在第一象限,且當(dāng)為平行四邊形對角線時,圖示平行四邊形,中點坐標(biāo)為,
該中點也是的中點,
即:,,,
解得:,,,
故點、;
③在第三象限,且當(dāng)為平行四邊形的一條邊時,圖示平行四邊形,點向左平移個單位、向上平移個單位得到點,
同理點向右平移個單位、向下平移個單位為得到點,即:,,,
解得:,,,
故點、點;
綜上:,或,或,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價不能超過批發(fā)價的2.5倍.
(1)當(dāng)每個紀(jì)念品定價為3.5元時,商店每天能賣出________件;
(2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 對載人航天器“神舟十號”的零部件的檢查適合采用抽樣調(diào)查的方式
B. 某市天氣預(yù)報中說“明天降雨的概率是80%”,表示明天該市有80%的地區(qū)降雨
C. 擲一枚硬幣,正面朝上的概率為
D. 若0.1,0.01,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)在平面直角坐標(biāo)系中,拋物線經(jīng)過A(-3,0)、B(4,0)兩點,且與y軸交于點C,點D在x軸的負(fù)半軸上,且BD=BC,有一動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度向點B移動,同時另一個動點Q從點C出發(fā),沿線段CA以某一速度向點A移動.
(1)求該拋物線的解析式;
(2)若經(jīng)過t秒的移動,線段PQ被CD垂直平分,求此時t的值;
(3)該拋物線的對稱軸上是否存在一點M,使MQ+MA的值最?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些數(shù)排列成下表中的四列:
第1列 | 第2列 | 第3列 | 第4列 | |
第1行 | 1 | 4 | 5 | 10 |
第2行 | 4 | 8 | 10 | 12 |
第3行 | 9 | 12 | 15 | 14 |
… | … | … | … | … |
(1)第4行第1列的數(shù)是多少?直接寫出答案;
(2)第17行的四個數(shù)之和是多少?請寫出適當(dāng)?shù)倪^程;
(3)數(shù)100所在的行和列分別是多少?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是AD邊上的一點,AF⊥BE于F,CG⊥BE于G.
(1)若∠FAE=20°,求∠DCG的度數(shù);
(2)猜想:AF,FG,CG三者之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出版社為了了解在校大學(xué)生最喜愛的圖書類別(圖書分為文學(xué)類、藝體類、科普類、其他等四類),在廣州某大學(xué)進行隨機調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(如圖所示),請你結(jié)合圖中的信息解答下列問題:
(1)求被調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)已知該校有12000名學(xué)生,估計全校最喜愛文學(xué)類圖書的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測傾器高度忽略不計,結(jié)果保留根號形式)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com