A. | x=$\frac{a+b}{2}$ | B. | x=$\sqrt{ab}$ | C. | a2-b2=x2 | D. | $\frac{1}{x}$=$\frac{1}{a}$+$\frac{1}$ |
分析 由PC∥AB得$\frac{PC}{AB}=\frac{CQ}{BQ}$,所以$\frac{a-x}{a}=\frac{CQ}{CQ+b}$,所以CQ=$\frac{ab}{x}-b$,所以DP+CQ=x+$\frac{ab}{x}-b$≥2$\sqrt{ab}$-b,當x=$\frac{ab}{x}$時,DP+CQ的值最小,由此即可解決問題.
解答 解:如圖,∵四邊形ABCD是矩形,
∴AB=CD=a,AD=BC=b,AB∥CD,
∵PC∥AB,
∴$\frac{PC}{AB}=\frac{CQ}{BQ}$,
∴$\frac{a-x}{a}=\frac{CQ}{CQ+b}$,
∴CQ=$\frac{ab}{x}-b$,
∴DP+CQ=x+$\frac{ab}{x}-b$≥2$\sqrt{ab}$-b,
∴當x=$\frac{ab}{x}$時,DP+CQ的值最小,
∴x2=ab,
∴x=$\sqrt{ab}$.
故選B.
點評 本題考查矩形的性質(zhì)、平行線分線段成比例定理,不等式的性質(zhì)即a+b≥2$\sqrt{ab}$(a≥0,b≥0)且a=b時等號成立,靈活運用不等式性質(zhì)是解決最值的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com