【題目】如圖,ABC和△ADE中,,邊AD與邊BC交于點(diǎn)P(不與點(diǎn)B,C重合),點(diǎn)B,EAD異側(cè),AI、CI分別平分,

1)求證:

2)設(shè),請(qǐng)用含的式子表示PD,并求PD的最大值;

3)當(dāng)時(shí),的取值范圍為,分別直接寫出m,n的值.

【答案】(1)見詳解;(2)6-x,3; (3)

【解析】

1)由條件易證△ABC≌△ADE,得∠BAC=DAE,即可得出結(jié)論.

2PD=ADAP=6xAP的最小值即APBC時(shí)AP的長(zhǎng)度,此時(shí)PD可得最大值.

3)應(yīng)用三角形內(nèi)角定理及角平分線定義即可表示出∠AIC,從而得到m,n的值.

1)在△ABC和△ADE中,(如圖1

,∴△ABC≌△ADESAS),∴∠BAC=DAE,

即∠BAD+DAC=DAC+CAE,∴∠BAD=CAE

2)∵AD=6,AP=x,∴PD=6x

當(dāng)ADBC時(shí),APAB=3最小,即PD=63=3PD的最大值.

3)如圖2,設(shè)∠BAP,則∠APC=α+30°.

ABAC,∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α

AI、CI分別平分∠PAC,∠PCA,

∴∠IACPAC,∠ICAPCA,

∴∠AIC=180°﹣(∠IAC+ICA=180°(∠PAC+PCA=180°90°﹣α+60°)

α+105°.

0α90°,∴105°α+105°<150°,即105°<∠AIC150°,∴m=105,n=150

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABE≌△ACD.

(1)如果BE=6,DE=2,求BC的長(zhǎng);

(2)如果∠BAC=75°,BAD=30°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,將繞點(diǎn)按順時(shí)針旋轉(zhuǎn)得到,連接,,它們交于點(diǎn),

求證:

當(dāng),求的度數(shù).

當(dāng)四邊形是菱形時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) AB的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)圖1中,點(diǎn)C的坐標(biāo)為 ;

(2)如圖2,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)E在射線CD上,過(guò)點(diǎn)BBFBEy軸于點(diǎn)F

①當(dāng)點(diǎn)E為線段CD的中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);

②當(dāng)點(diǎn)E在第二象限時(shí),請(qǐng)直接寫出F點(diǎn)縱坐標(biāo)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用兩個(gè)全等的等邊拼成如圖的菱形.現(xiàn)把一個(gè)含角的三角板與這個(gè)菱形疊合,使三角板的角的頂點(diǎn)與點(diǎn)重合,兩邊分別與重合.將三角板繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn).

如圖,當(dāng)三角板的兩邊分別與菱形的兩邊、相交于點(diǎn)時(shí),探求、的數(shù)量關(guān)系,并說(shuō)明理由;

繼續(xù)旋轉(zhuǎn)三角板,當(dāng)兩邊、分別交的延長(zhǎng)線于點(diǎn)、時(shí),畫出旋轉(zhuǎn)后相應(yīng)的圖形,并直接寫出、、滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DBCB的延長(zhǎng)線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB。

(1)△BPQ 三角形;

(2)求PQ的長(zhǎng)度;

(3)求∠APB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC已知點(diǎn)D在線段AB的反向延長(zhǎng)線上,過(guò)AC的中點(diǎn)F作線段GEDAC的平分線于E,BCGAEBC

(1)求證ABC是等腰三角形;

(2)AE=8,AB=10,GC=2BG,ABC的周長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案