【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長為( )

A. B. C. D.

【答案】B

【解析】

FFHADH,交EDO,于是得到FH=AB=2,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.

FFHADH,交EDO,則FH=AB=2.

BF=2FC,BC=AD=3,

BF=AH=2,F(xiàn)C=HD=1,

AF===,

OHAE,

=,

OH=AE=,

OF=FH﹣OH=2﹣=,

AEFO,∴△AMEFMO,

=AM=AF=,

ADBF,∴△AND∽△FNB,

=,

AN=AF=

MN=AN﹣AM==,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-4,0),點(diǎn)B在直線y=x+2當(dāng)A、B兩點(diǎn)間的距離最小時(shí),點(diǎn)B的坐標(biāo)是(

A. () B. () C. (-3,-1) D. (-3,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種情況是等可能的,當(dāng)三輛汽車經(jīng)過這個(gè)十字路口時(shí):

1)求三輛車全部同向而行的概率;

2)求至少有兩輛車向左轉(zhuǎn)的概率;

3)由于十字路口右拐彎處是通往新建經(jīng)濟(jì)開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時(shí)段對(duì)車流量作了統(tǒng)計(jì),發(fā)現(xiàn)汽車在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.目前在此路口,汽車左轉(zhuǎn)、右轉(zhuǎn)、直行的綠燈亮的時(shí)間分別為30秒,在綠燈亮總時(shí)間不變的條件下,為了緩解交通擁擠,請(qǐng)你用統(tǒng)計(jì)的知識(shí)對(duì)此路口三個(gè)方向的綠燈亮的時(shí)間做出合理的調(diào)整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列圖形,它是把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1);對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,將這種做法繼續(xù)下去(如圖2,圖3…).觀察規(guī)律解答以下各題:

……

(1)填寫下表:

圖形序號(hào)

挖去三角形的個(gè)數(shù)

1

1

2

1+3

3

1+3+9

4

(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)fn(用含n的代數(shù)式表示);

(3)若圖n+1中挖去三角形的個(gè)數(shù)為fn+1,求fn+1-fn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.

(1)求證:AD=CE;

(2)當(dāng)點(diǎn)D在什么位置時(shí),四邊形ADCE是矩形,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點(diǎn),且關(guān)于原點(diǎn)成中心對(duì)稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點(diǎn)B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了準(zhǔn)備迎新活動(dòng),用700元購買了甲、乙兩種小禮品260個(gè),其中購買甲種禮品比乙種禮品少用了100元.

(1)購買乙種禮品花了______元;

(2)如果甲種禮品的單價(jià)比乙種禮品的單價(jià)高20%,求乙種禮品的單價(jià).(列分式方程解應(yīng)用題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EFAC于點(diǎn)F,DBAC于點(diǎn)M,∠1=2,∠3=C,請(qǐng)問ABMN平行嗎?說明理由.完成下列推理過程:

解:ABMN.理由如下:

EFACDBAC,(已知),

CFE=CMD=90°,(   。

EFDM,(    

2=CDM,(    

∵∠1=2,(已知),

1=     (   。

MNCD,(    

∵∠3=C,(已知),

ABCD,(     ),

ABMN.(   。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位計(jì)劃在春節(jié)期間組織員工人去旅游,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報(bào)價(jià)均為2000元人.兩家旅行社對(duì)10人以上的團(tuán)體推出了不同的優(yōu)惠措施:甲旅行社對(duì)每位員工七五折優(yōu)惠:乙旅行社免去一位帶隊(duì)員工的費(fèi)用,其余員工八折優(yōu)惠

1)求甲、乙兩家旅行社的費(fèi)用分別為多少元?(用含 的代數(shù)式表示)

2)若該單位組織包括帶隊(duì)員工在內(nèi)共20名員工去旅游,你認(rèn)為該單位選擇哪家旅行社比較優(yōu)惠?并通過計(jì)算說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案