【題目】如圖,在中.

利用尺規(guī)作圖,在BC邊上求作一點P,使得點PAB的距離的長等于PC的長;

利用尺規(guī)作圖,作出中的線段PD.

要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑

【答案】作圖見解析; (2)作圖見解析.

【解析】

由點PAB的距離的長等于PC的長知點P平分線上,再根據(jù)角平分線的尺規(guī)作圖即可得以點A為圓心,以任意長為半徑畫弧,與AC、AB分別交于一點,然后分別以這兩點為圓心,以大于這兩點距離的一半長為半徑畫弧,兩弧交于一點,過點A及這個交點作射線交BC于點P,P即為要求的點);

根據(jù)過直線外一點作已知直線的垂線的尺規(guī)作圖即可得以點P為圓心,以大于點PAB的距離為半徑畫弧,與AB交于兩點,分別以這兩點為圓心,以大于這兩點間距離一半長為半徑畫弧,兩弧在AB的一側交于一點,過這點以及點P作直線與AB交于點D,PD即為所求)

如圖,點P即為所求;

如圖,線段PD即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們在學習實數(shù)時畫了這樣一個圖,即以數(shù)軸上的單位長為‘1’的線段作一個正方形,然后以原點O為圓心,正方形的對角線長為半徑畫弧交數(shù)軸于點A”,請根據(jù)圖形回答下列問題:

(1)線段OA的長度是多少?(要求寫出求解過程)

(2)這個圖形的目的是為了說明什么?

(3)這種研究和解決問題的方式體現(xiàn)了 的數(shù)學思想方法.(將下列符合的選項序號填在橫線上)

A.數(shù)形結合 B.代入 C.換元 D.歸納

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2x+2x軸交于A、B兩點,與y軸交于點C

1)求點A,B,C的坐標;

2)點E是此拋物線上的點,點F是其對稱軸上的點,求以AB,EF為頂點的平行四邊形的面積;

3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】6分)在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學習小組做摸球實驗,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復,表是活動進行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

68

109

136

345

368

701

摸到乒乓球的頻率

0.68

0.73

0.68

0.69

0.70

0.70

1)請估計:當n很大時,摸到白球的頻率將會接近________;

2)假如你去摸一次,你摸到白球的概率是_______,摸到黑球的概率是_______;

3)試估算口袋中黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點DDEAB于點E.

(1)求證:△ACD≌△AED;

(2)若∠B=30°,CD=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于點O,AE平分∠BAD交BC于E, 若∠CAE=15°則∠BOE=(

A. 30° B. 45° C. 60° D. 75°

查看答案和解析>>

同步練習冊答案