【題目】如圖所示,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系.

1)求OE的長.

2)求經(jīng)過O,DC三點的拋物線的解析式.

3)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點QE點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設運動時間為t秒,當t為何值時,DP=DQ

4)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,CE為頂點的四邊形是平行四邊形?若存在,直接寫出M點的坐標;若不存在,請說明理由.

【答案】13;(2;(3t=;(4)存在,M點的坐標為(2,16)或(-6,16)或

【解析】

1)由矩形的性質以及折疊的性質可求得CE、CO的長,在RtCOE中,由勾股定理可求得OE的長;
2)設AD=m,在RtADE中,由勾股定理列方程可求得m的值,從而得出D點坐標,結合C、O兩點,利用待定系數(shù)法可求得拋物線解析式;
3)用含t的式子表示出BP、EQ的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;

4)由(2)可知C-4,0),E0,-3),設N-2,n),Mm,y),分以下三種情況:①以EN為對角線,根據(jù)對角線互相平分,可得CM的中點與EN的中點重合,根據(jù)中點坐標公式,可得m的值,根據(jù)自變量與函數(shù)值的對應關系,可得答案;②當EM為對角線,根據(jù)對角線互相平分,可得CN的中點與EM的中點重合,根據(jù)中點坐標公式,可得m的值,根據(jù)自變量與函數(shù)值的對應關系,可得答案;③當CE為對角線,根據(jù)對角線互相平分,可得CE的中點與MN的中點重合,根據(jù)中點坐標公式,可得m的值,根據(jù)自變量與函數(shù)值的對應關系,可得答案.

解:(1)∵OABC為矩形,∴BC=AO=5,CO=AB=4

又由折疊可知,,

2)設AD=m,則DE=BD=4-m
OE=3,∴AE=5-3=2,

RtADE中,AD2+AE2=DE2,

m2+22=(4-m)2,∴m=,∴D,

∵該拋物線經(jīng)過C(-40)、O00),

∴設該拋物線解析式為,

把點D代入上式得,

a=

;

3)如圖所示,連接DPDQ.由題意可得,CP=2t,EQ=t,則BP=5-2t

DP=DQ時,在RtDBPRtDEQ中,

,

RtDBPRtDEQHL),∴BP=EQ,

5-2t=t,∴t=

故當t=時,DP=DQ;

4)∵拋物線的對稱軸為直線x==-2
∴設N-2,n),
又由(2)可知C-4,0),E0,-3),設Mm,y),
①當EN為對角線,即四邊形ECNM是平行四邊形時,如圖1,

則線段EN的中點橫坐標為=-1,線段CM的中點橫坐標為
EN,CM互相平分,
=-1,解得m=2
M點在拋物線上,
y=×22+×2=16,
M2,16);
②當EM為對角線,即四邊形ECMN是平行四邊形時,如圖2,

則線段EM的中點橫坐標為,線段CN中點橫坐標為,

EM,CN互相平分,
m=-3,解得m=-6,
又∵M點在拋物線上,

,

M-6,16);
③當CE為對角線,即四邊形EMCN是平行四邊形時,如圖3,

線段CE的中點的橫坐標為=-2,線段MN的中點的橫坐標為

CEMN互相平分,∴,

解得m=-2,
m=-2時,y=,

M

綜上可知,存在滿足條件的點M,其坐標為(216)或(-6,16)或

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A1,4)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當BD2AB時,求點B的坐標;

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在中,、分別是的角平分線,交、于點、,連接、

1)求證:互相平分;

2)若,,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個晾衣架的實物圖,支架的基本圖形是菱形,MN是晾衣架的一個滑槽,點P在滑槽MN上、下移動時,晾衣架可以伸縮,其示意圖如圖所示,已知每個菱形的邊長均為20cm,且

當點P向下滑至點N處時,測得

求滑槽MN的長度;

此時點A到直線DP的距離是多少?

當點P向上滑至點M處時,點A在相對于的情況下向左移動的距離是多少?

結果精確到,參考數(shù)據(jù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2-2x+m=0,有兩個不相等的實數(shù)根.

⑴求實數(shù)m的最大整數(shù)值;

⑵在⑴的條下,方程的實數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,點E、F分別在邊CD、AB上,且滿足CEAF

1)求證:△ADE≌△CBF;

2)連接AC,若AC恰好平分∠EAF,試判斷四邊形AECF為何種特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(操作體驗)

如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點AB為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;

第二步:連接OA,OB;

第三步:以O為圓心,OA長為半徑作⊙O,交l

所以圖中即為所求的點.(1)在圖②中,連接,說明∠=30°

(方法遷移)

2)如圖③,用直尺和圓規(guī)在矩形ABCD內作出所有的點P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

(深入探究)

3)已知矩形ABCD,BC=2AB=m,PAD邊上的點,若滿足∠BPC=45°的點P恰有兩個,則m的取值范圍為________

4)已知矩形ABCDAB=3,BC=2,P為矩形ABCD內一點,且∠BPC=135°,若點P繞點A逆時針旋轉90°到點Q,則PQ的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受新冠疫情影響,31日起,君樂買菜網(wǎng)絡公司某種蔬菜的銷售價格開始上漲.如圖1,前四周該蔬菜每周的平均銷售價格y(元/kg)與周次xx是正整數(shù),1≤x5)的關系可近似用函數(shù)刻畫;進入第5周后,由于外地蔬菜的上市,該蔬菜每周的平均銷售價格y(元/kg)從第5周的6/kg下降至第6周的5.6/kg,y與周次x5≤x≤7)的關系可近似用函數(shù)刻畫.

1)求a,b的值.

2)若前五周該蔬菜的銷售量mkg)與每周的平均銷售價格y(元/kg)之間的關系可近似地用如圖2所示的函數(shù)圖象刻畫,第6周的銷售量與第5周相同:

①求my的函數(shù)表達式;

②在前六周中,哪一周的銷售額w(元)最大?最大銷售額是多少?

3)若該蔬菜第7周的銷售量是100kg,由于受降雨的影響,此種蔬菜第8周的可銷售量將比第7周減少a%a0).為此,公司又緊急從外地調運了5噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜第8周的銷售價格比第7周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第8周的總銷售額與第7周剛好持平,請通過計算估算出a的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解九年級學生每天參加體育鍛煉額時間,從該校九年級學生中隨機抽取20名學生進行調查,得到如下數(shù)據(jù)(單位:分鐘):

30 60 70 10 30 115 70 60 75 90 15 70 40 75 105 80 60 30 70 45

對以上數(shù)據(jù)進行整理分析,得到下列表一和表二:

表一

時間t(單位:分鐘)

人數(shù)

2

a

10

b

表二

平均數(shù)

中位數(shù)

眾數(shù)

60

c

d

根據(jù)以上提供信息,解答下列問題:

1)填空

a= b=

c= d=

2)如果該校現(xiàn)有九年級學生200名,請估計該校九年級學生每天參加體育鍛煉的時間達到平均水平及以上的學生人數(shù)。

查看答案和解析>>

同步練習冊答案