【題目】如果3y9﹣2m+2=0是關(guān)于y的一元一次方程,則m=
【答案】4
【解析】解:3y9﹣2m+2=0是關(guān)于y的一元一次方程,
得到9﹣2m=1,
解得:m=4,
故答案為:4
利用一元一次方程的定義判斷即可確定出m的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,∠F=60°,求:
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長(zhǎng)度和∠EBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算中,正確的是( )
A. (﹣x)2x3=x5B. (x2y)3=x6y
C. (a+b)2=a2+b2D. a6+a3=a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面推理過(guò)程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠A=50°.
(1)如圖①,∠ABC、∠ACB的角平分線(xiàn)交于點(diǎn)O,則∠BOC= °.
(2)如圖②,∠ABC、∠ACB的三等分線(xiàn)分別對(duì)應(yīng)交于O1、O2,則∠BO2C= °.
(3)如圖③,∠ABC、∠ACB的n等分線(xiàn)分別對(duì)應(yīng)交于O1、O2…On﹣1(內(nèi)部有n﹣1個(gè)點(diǎn)),求∠BOn﹣1C(用n的代數(shù)式表示).
(4)如圖③,已知∠ABC、∠ACB的n等分線(xiàn)分別對(duì)應(yīng)交于O1、O2…On﹣1,若∠BOn﹣1C=60°,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一組數(shù)據(jù)中,隨機(jī)抽取50個(gè)作為樣本進(jìn)行統(tǒng)計(jì),在頻數(shù)分布表中,54.5~57.5這一組的頻率是0.12,那么這個(gè)樣本中的數(shù)據(jù)落在54.5~57.5之間的有__個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿(mǎn)足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度數(shù);
(2)若平行移動(dòng)AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個(gè)比值
(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com