【題目】如圖,在矩形ABCD中,E是BC邊的中點(diǎn),將△ABE沿AE所在直線(xiàn)折疊得到△AGE,延長(zhǎng)AG交CD于點(diǎn)F,已知CF=2,FD=1,則BC的長(zhǎng)是( )
A.3B.2C.2D.2
【答案】B
【解析】
首先連接EF,由折疊的性質(zhì)可得BE=EG,又由E是BC邊的中點(diǎn),可得EG=EC,然后證得Rt△EFG≌Rt△EFC(HL),繼而求得線(xiàn)段AF的長(zhǎng),再利用勾股定理求解,即可求得答案.
連接EF,
∵E是BC的中點(diǎn),
∴BE=EC,
∵△ABE沿AE折疊后得到△AFE,
∴BE=EG,
∴EG=EC,
∵在矩形ABCD中,
∴∠C=90°,
∴∠EGF=∠B=90°,
∵在Rt△EFG和Rt△EFC中,
,
∴Rt△EFG≌Rt△EFC(HL),
∴FG=CF=2,
∵在矩形ABCD中,AB=CD=CF+DF=2+1=3,
∴AG=AB=3,
∴AF=AG+FG=3+2=5,
∴BC=AD=.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C、D兩點(diǎn),點(diǎn)D(2,﹣3),點(diǎn)B是線(xiàn)段AD的中點(diǎn).
(1)求一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的解析式;
(2)求△COD的面積;
(3)直接寫(xiě)出時(shí)自變量x的取值范圍.
(4)動(dòng)點(diǎn)P(0,m)在y軸上運(yùn)動(dòng),當(dāng)的值最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在中,,過(guò)上一點(diǎn)作交于點(diǎn),以為頂點(diǎn),為一邊,作,另一邊交于點(diǎn).
(1)求證:四邊形為平行四邊形;
(2)當(dāng)點(diǎn)為中點(diǎn)時(shí),的形狀為 ;
(3)延長(zhǎng)圖①中的到點(diǎn)使連接得到圖②,若判斷四邊形的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為(,0),點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直角三角形ABC中,∠C=90°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△AED,使點(diǎn)C的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,E為點(diǎn)B的對(duì)應(yīng)點(diǎn).設(shè)∠BAC=α,則∠BED=______.(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A′ ; B′ ;C′ ;
(2)說(shuō)明△A′B′C′由△ABC經(jīng)過(guò)怎樣的平移得到? .
(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 ;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格圖中,點(diǎn)A、B、C均在格點(diǎn)上.
(1)在圖中畫(huà)出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°形成的△A′B′C′;
(2)三角形ABC的面積為 ;
(3)若有△ABQ的面積等于△ABC面積,請(qǐng)?jiān)趫D中找到格點(diǎn)Q,如果點(diǎn)Q不止一個(gè),請(qǐng)用Q1,Q2,Q3,…表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平安路與幸福路是兩條平行的道路,且與新興大街垂直,老街與小米胡同垂直,書(shū)店位于老街與小米胡同的交口處,如果小強(qiáng)同學(xué)站在平安路與新興大街的交叉路口,準(zhǔn)備去書(shū)店,按圖中的街道行走,最近的路程為____________ m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2
(1)求證:△ABC≌△ADE;
(2)找出圖中與∠1、∠2相等的角(直接寫(xiě)出結(jié)論,不需證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com