如圖,在正方形ABCD中,點E為BC邊的中點,點B′與點B關于AE對稱,B′B與AE交于點F,連接AB′,DB′,F(xiàn)C.下列結(jié)論:①AB′=AD;②△FCB′為等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.正確的個數(shù)是


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
B
①∵點B′與點B關于AE對稱,
∴△ABF與△AB′F關于AE對稱,
∴AB=AB′,
∵AB=AD,
∴AB′=AD.故本選項正確;
②如圖,連接EB′.

則BE=B′E=EC,
∠FBE=∠FB′E,
∠EB′C=∠ECB′.
則∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,
即△BB′C為直角三角形.
∵FE為△BCB′的中位線,
∴B′C=2FE,
∵△B′EF∽△AB′F,

故FB′=2FE.
∴B′C=FB′.
∴△FCB′為等腰直角三角形.
故本選項正確.
③假設∠ADB′=75°成立,
則∠AB′D=75°,
∠ABB′=∠AB′B=360°-75°-75°-90°=60°,
∴△ABB′為等邊三角形,
故B′B=AB=BC,與B′B<BC矛盾,
故本選項錯誤.
④設∠ABB′=∠AB′B=x度,
∠AB′D=∠ADB′=y度,
則在四邊形ABB′D中,2x+2y+90=360,
即x+y=135度.
又∵∠FB′C=90°,
∴∠DB′C=360°-135°-90°=135°.
故本選項正確.
故選B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案