【題目】如圖,已知P、Q△ABCBC邊上的兩點(diǎn),且BP=AP=AQ=QC∠PAQ=60°.

(1)求證:AB=AC;

(2)∠BAC的度數(shù).

【答案】1)證明見解析;(2)∠BAC=120°.

【解析】

1)由AP=AQ,∠PAQ=60°可得△APQ是等邊三角形,由BP=AP及外角性質(zhì)可求出∠B=30°,同理可得∠C=30°,即可證明∠B=C,即可得AB=AC;(2)根據(jù)三角形內(nèi)角和定理求出∠BAC的度數(shù)即可.

1)∵AP=AQ,∠PAQ=60°,

∴△APQ是等邊三角形,∠APQ=AQP=60°,

BP=AP

∠B=∠BAP,

∠APQ=∠B+∠BAP=60°,

∴∠B=30°

同理可得:∠C=30°,

∠B=∠C,

AB=AC.

2)∵∠B=∠C=30°,

∠BAC=180°-2∠B=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CDEF相交于點(diǎn)O,∠COE=60°,將一直角三角尺AOB的直角頂點(diǎn)與O重合,OA平分∠COE.

(1)∠BOD的度數(shù);

(2)將三角尺AOB以每秒的速度繞點(diǎn)O順時(shí)針旋轉(zhuǎn),同時(shí)直線EF也以每秒的速度繞點(diǎn)O順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為何值時(shí),直線EF平分∠AOB?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖1所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為AC的中點(diǎn),點(diǎn)E是拋物線在第二象限圖象上一動(dòng)點(diǎn),經(jīng)過點(diǎn)A,B,C三點(diǎn)的拋物線的解析式為y=ax2+bx+8.

(1)求拋物線的解析式;
(2)如圖1,連接DE,把點(diǎn)A沿直線DE翻折,點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對(duì)稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)圖2中,點(diǎn)E運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)G恰好落在BC上時(shí),求E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)均為個(gè)單位的正方形網(wǎng)格圖中,建立了直角坐標(biāo)系,按要求解答下列問題:

1)寫出三個(gè)頂點(diǎn)的坐標(biāo);

2)畫出向右平移個(gè)單位后的圖形

3)求在平移過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,sin∠BAC= ,點(diǎn)D是AC上一點(diǎn),且BC=BD=2,將Rt△ABC繞點(diǎn)C旋轉(zhuǎn)到Rt△FEC的位置,并使點(diǎn)E在射線BD上,連接AF交射線BD于點(diǎn)G,則AG的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE是△ACD的角平分線,B在DA延長(zhǎng)線上,AE∥BC,F(xiàn)為BC中點(diǎn),判斷AE與AF的位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長(zhǎng)方形為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)在第三象限.

1)如圖1,若過點(diǎn)的直線與長(zhǎng)方形的邊交于點(diǎn)且將長(zhǎng)方形的面積分為兩部分,求點(diǎn)的坐標(biāo);

2)如圖2軸負(fù)半軸上一點(diǎn),且軸正半軸上一動(dòng)點(diǎn),的平分線的延長(zhǎng)線于點(diǎn)在點(diǎn)運(yùn)動(dòng)的過程中,的值是否變化?若不變求出其值;若變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運(yùn)貨10.1A型車和2B型車載滿貨物一次可運(yùn)貨11.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車a輛和B型車b,一次運(yùn)完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運(yùn)貨物多少噸?

2請(qǐng)幫助物流公司設(shè)計(jì)租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請(qǐng)選出最省錢的租車方案,并求出最少的租車費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,且AB=2cm,點(diǎn)P為弧AB上一動(dòng)點(diǎn)(不與A,B重合), = ,過點(diǎn)D作⊙O的切線交PB的延長(zhǎng)線于點(diǎn)C.
(1)試證明AB∥CD;
(2)填空: ①當(dāng)BP=1cm時(shí),PD=cm;
②當(dāng)BP=cm時(shí),四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案