【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于 .
【答案】40
【解析】解:過點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示.
設(shè)OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB= ,
∴AM=OAsin∠AOB= a,OM= = a,
∴點(diǎn)A的坐標(biāo)為( a, a).
∵點(diǎn)A在反比例函數(shù)y= 的圖象上,
∴ a× a= a2=48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6,OB=OA=10.
∵四邊形OACB是菱形,點(diǎn)F在邊BC上,
∴S△AOF= S菱形OBCA= OBAM=40.
故答案是:40.
【考點(diǎn)精析】本題主要考查了比例系數(shù)k的幾何意義和菱形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,點(diǎn)D的坐標(biāo)為(﹣1,0),點(diǎn)A的橫坐標(biāo)是1,tan∠CDO=2.過點(diǎn)B作BH⊥y軸交y軸于H,連接AH.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABH面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車上學(xué),開始以正常速度勻速行駛,但行至中途時,自行車出了故障,只好停下來修車,車修好后,因怕耽誤上課,他比修車前加快了速度繼續(xù)勻速行駛,下面是行駛路程s(m)關(guān)于時間t(min)的函數(shù)圖象,那么符合小明行駛情況的大致圖象是()
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于點(diǎn)D,DE⊥AB于E.若△ADE的周長為8cm,則AB=_____ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對今年這種蔬菜的銷售價格進(jìn)行了預(yù)測,預(yù)測情況如圖,圖中的拋物線(部分)表示這種蔬菜銷售價與月份之間的關(guān)系.觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?答題要求:(1)請?zhí)峁┧臈l信息;(2)不必求函數(shù)的解析式.(注:此題答案不唯一,以上答案僅供參考.若有其它答案,只要是根據(jù)圖象得出的信息,并且敘述正確都可以)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( )
A. , B. ,
C. , D. ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要設(shè)計(jì)一個等腰梯形的花壇,花壇上底120米,下底180米,上下底相距80米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為x米.
(1)用含x的式子表示橫向甬道的面積;
(2)當(dāng)三條甬道的面積是梯形面積的八分之一時,求甬道的寬;
(3)根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過6米.如果修建甬道的總費(fèi)用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是5.7,花壇其余部分的綠化費(fèi)用為每平方米0.02萬元,那么當(dāng)甬道的寬度為多少米時,所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com