圖3-1-1中,上面一行是一些具體的實物圖形,下面一行是一些立體圖形,試用線連接立體圖形和類似的實物圖形.

圖3-1-1

思路解析:解決本題的關鍵是能從實物圖形中抽象出數(shù)學幾何體.

答案:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,在△ABC中,AB=AC.
(1)按照下列要求畫出圖形:
1)作∠BAC的平分線交BC于點D;
2)過D作DE⊥AB,垂足為點E;
3)過D作DF⊥AC,垂足為點F.
(2)根據(jù)上面所畫的圖形,求證:EB=FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、(1)如圖,方格紙中的△ABC的三個頂點分別在小正方形的頂點(格點)上,稱為格點三角形.請在方格紙上按下列要求畫圖.
在圖①中畫出與△ABC全等且有一個公共頂點的格點△A′B′C′;
在圖②中畫出與△ABC全等且有一條公共邊的格點△A″B″C″.


(2)先閱讀然后回答問題:
如圖,D是△ABC中BC邊上一點,E是AD上一點,AB=AC,EB=EC,∠BAE=∠CAE,試說明△4EB絲AAEC.
解:在△ABE和△AEC中,

因為AB=AC,∠BAE=∠CAE,EB=EC,…第1步
根據(jù)“SAS”可以知道△ABE≌△AEC.…第2步
請問上面解題過程正確嗎?若正確,請寫出每一步推理的依據(jù);若不正確,請指出錯在哪一步,并寫出你認為正確的過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題:如圖(1)在菱形ABCD和菱形BEFG中,點A,B,E在同一直線上,P是線段DF的中點,連接PG,PC,若∠ABC=∠BEF=60°,探究PG與PC的位置關系及
PG
PC
的值,小聰同學的思路是延長GP交DC于點H,構造全等三角形,經(jīng)過推理使問題得到解決.請你參考小聰同學的思路,探究并解決下列問題:

(1)寫出上面問題中線段PG與PC的位置關系及
PG
PC
的值.
(2)將圖(1)中的菱形BEFG恰好與菱形ABCD的邊AB在同一直線上,原問題中的其它條件不變(如圖(2))你在(1)中得到的兩個結論是否發(fā)生變化?寫出你的猜想,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解決下面問題:
如圖,在△ABC中,∠A是銳角,點D,E分別在AB,AC上,且∠DCB=∠EBC=
12
∠A,BE與CD相交于點O,探究BD與CE之間的數(shù)量關系,并證明你的結論.

小新同學是這樣思考的:
在平時的學習中,有這樣的經(jīng)驗:假如△ABC是等腰三角形,那么在給定一組對應條件,如圖a,BE,CD分別是兩底角的平分線(或者如圖b,BE,CD分別是兩條腰的高線,或者如圖c,BE,CD分別是兩條腰的中線)時,依據(jù)圖形的軸對稱性,利用全等三角形和等腰三角形的有關知識就可證得更多相等的線段或相等的角.這個問題也許可以通過添加輔助線構造軸對稱圖形來解決.請參考小新同學的思路,解決上面這個問題.

查看答案和解析>>

同步練習冊答案