【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時,水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為米.
【答案】2
【解析】解:如圖,
建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),
拋物線以y軸為對稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線頂點(diǎn)C坐標(biāo)為(0,2),
通過以上條件可設(shè)頂點(diǎn)式y(tǒng)=ax2+2,其中a可通過代入A點(diǎn)坐標(biāo)(﹣2,0),
到拋物線解析式得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,
當(dāng)水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=﹣1時,對應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=﹣1與拋物線相交的兩點(diǎn)之間的距離,
可以通過把y=﹣1代入拋物線解析式得出:
﹣1=﹣0.5x2+2,
解得:x=± ,
所以水面寬度增加到2 米,
所以答案是:2 米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,萬州市居民生活用水按階梯式水價計費(fèi),表是該市居民“一戶一表”生活用水階梯式計費(fèi)價格表的一部分信息:(水價計費(fèi)自來水銷售費(fèi)用污水處理費(fèi)用)
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元噸 | 單價:元噸 |
17噸及以下 | 0.80 | |
超過17噸不超過30噸的部分 | 0.80 | |
超過30噸的部分 | 6.00 | 0.80 |
說明:①每戶產(chǎn)生的污水量等于該戶的用水量,②水費(fèi)=自來水費(fèi)+污水處理費(fèi);
已知小明家2013年3月份用水20噸,交水費(fèi)66元;5月份用水25噸,交水費(fèi)91元.
(1)求,的值.
(2)隨著夏天的到來,用水量將增加。為了節(jié)省開支,小夢計劃把6月份的水費(fèi)控制在不超過家庭月收入的2%,若小夢加的月收入為9200元,則小王家6月份最多能用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到 達(dá)圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.
(2)請你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達(dá)式;
(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸、y軸上,OA=3,OB=4,連接AB.點(diǎn)P在平面內(nèi),若以點(diǎn)P、A、B為頂點(diǎn)的三角形與△AOB全等(點(diǎn)P與點(diǎn)O不重合),則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線AM上一動點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點(diǎn)P運(yùn)動時,∠APB:∠ADB的比值是否隨之變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
(3)當(dāng)點(diǎn)P運(yùn)動到某處時,∠ACB=∠ABD,求此時∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點(diǎn)C,過A作AD⊥ED于點(diǎn)D,過B作BE⊥ED于點(diǎn)E.
求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,-6),點(diǎn)A、C分別在坐標(biāo)軸上,點(diǎn)P是線段BC上的動點(diǎn),點(diǎn)D是直線y=-2x+6上的動點(diǎn)且在第四象限.若△APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,請直接寫出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李師傅負(fù)責(zé)修理我校課桌椅,現(xiàn)知道李師傅修理2張課桌和3把椅子共需86分鐘,修理5張課桌和2把椅子共需149分鐘.
(1)請問李師傅修理1張課桌和1把椅子各需多少分鐘
(2)現(xiàn)我校有12張課桌和14把椅子需要修理,要求1天做完,李師傅每天工作8小時,請問李師傅能在上班時間內(nèi)修完嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com