【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,則至少安排多少人清理養(yǎng)魚網(wǎng)箱?
(3)在第(2)問的條件下,若要求清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
【答案】(1)2000元;3000元 (2)18人 (3)見解析
【解析】
(1)設(shè)清理養(yǎng)魚網(wǎng)箱的人均費(fèi)用為元,清理捕魚網(wǎng)箱的人均費(fèi)用為元,根據(jù)題意列出二元一次方程組再進(jìn)行求解即可;
(2)設(shè)人清理養(yǎng)魚網(wǎng)箱,則人清理捕魚網(wǎng)箱,根據(jù)題意列一元一次不等式即可求解;
(3)根據(jù)題意列出不等式,再根據(jù)(2)的結(jié)論求不等式整數(shù)解即可.
解:(1)設(shè)清理養(yǎng)魚網(wǎng)箱的人均費(fèi)用為元,清理捕魚網(wǎng)箱的人均費(fèi)用為元,
根據(jù)題意,得:,
解得:,
答:清理養(yǎng)魚網(wǎng)箱的人均費(fèi)用為2000元,清理捕魚網(wǎng)箱的人均費(fèi)用為3000元;
(2)設(shè)人清理養(yǎng)魚網(wǎng)箱,則人清理捕魚網(wǎng)箱,
根據(jù)題意,得:
解得:
答:至少安排18人清理養(yǎng)魚網(wǎng)箱.
(3)根據(jù)題意,得:
解得:
由(2)知
所以
∵為整數(shù),
∴或
則分配清理人員方案有兩種:
方案一:18人清理養(yǎng)魚網(wǎng)箱,22人清理捕魚網(wǎng)箱;
方案二:19人清理養(yǎng)魚網(wǎng)箱,21人清理捕魚網(wǎng)箱.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,為的中點(diǎn),是邊上一動點(diǎn),連接.若設(shè) (當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為),.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整.
通過取點(diǎn)、畫圖、計(jì)算,得到了與的幾組值,如下表:
說明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).
(參考數(shù)據(jù):) .
如圖2,描出剩余的點(diǎn),并用光滑的曲線畫出該函數(shù)的圖象.
觀察圖象,下列結(jié)論正確的有 _ .
①函數(shù)有最小值,沒有最大值
②函數(shù)有最小值,也有最大值
③當(dāng)時(shí),隨著的增大而增大
④當(dāng)時(shí),隨著的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長方形的三個(gè)頂點(diǎn)的坐標(biāo)為,,,且軸,點(diǎn)是長方形內(nèi)一點(diǎn)(不含邊界).
(1)求,的取值范圍.
(2)若將點(diǎn)向左移動8個(gè)單位,再向上移動2個(gè)單位到點(diǎn),若點(diǎn)恰好與點(diǎn)關(guān)于軸對稱,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某市市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“:自行車,:家庭汽車,:公交車,:電動車,:其他”五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名市民;扇形統(tǒng)計(jì)圖中,項(xiàng)對應(yīng)的扇形圓心角是 °;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲、乙兩人上班時(shí)從四種交通工具中隨機(jī)選擇一種,請用列表法或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展以“我最喜歡的職業(yè)”為主題的調(diào)查活動,通過對學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求出扇形統(tǒng)計(jì)圖中,公務(wù)員部分對應(yīng)的圓心角的度數(shù);
(3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險(xiǎn)拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時(shí),問漁船在B處需要等待多長時(shí)間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時(shí))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線y=kx(k<0)相交于點(diǎn)A、B,以AB為底作等腰三角形,使∠ACB=120°,且點(diǎn)C的位置隨著k的不同取值而發(fā)生變化,但點(diǎn)C始終在某一函數(shù)圖象上,則這個(gè)圖象所對應(yīng)的函數(shù)解析式為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)P(m,n)是線段AD上的動點(diǎn).
(1)求直線AD及拋物線的解析式;
(2)過點(diǎn)P的直線垂直于x軸,交拋物線于點(diǎn)Q,求線段PQ的長度l與m的關(guān)系式,m為何值時(shí),PQ最長?
(3)在平面內(nèi)是否存在整點(diǎn)(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com