【題目】如圖①,平分,⊥,∠B=450,∠C=730.
(1) 求的度數(shù);
(2) 如圖②,若把“⊥”變成“點F在DA的延長線上,”,其它條件不變,求 的度數(shù);
(3) 如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.
【答案】(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不變,∠DAE =14°,證明詳見解析.
【解析】
(1)求出∠ADE的度數(shù),利用∠DAE=90°-∠ADE即可求出∠DAE的度數(shù).
(2)求出∠ADE的度數(shù),利用∠DFE=90°-∠ADE即可求出∠DAE的度數(shù).
(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的證明.
(1)∵∠B=45°,∠C=73°,
∴∠BAC=62°,
∵AD平分∠BAC,
∴∠BAD=∠CAD=31°,
∴∠ADE=∠B+∠BAD=45°+31°=76°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°-∠ADE=14°.
(2)同(1),可得,∠ADE=76°,
∵FE⊥BC,
∴∠FEB=90°,
∴∠DFE=90°-∠ADE=14°.
(2)=14°
(3)的大小不變.=14°
理由:∵ AD平分∠ BAC,AE平分∠BEC
∴∠BAC=2∠BAD,∠BEC=2∠AEB
∵ ∠BAC+∠B+∠BEC+∠C =360°
∴2∠BAD+2∠AEB=360°-∠B-∠C=242°
∴∠BAD+∠AEB=121°
∵ ∠ADE=∠B+∠BAD
∴∠ADE=45°+∠BAD
∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線y= 與直線y=﹣x﹣(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO= .
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地出租車計費方法如圖,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象解答下列問題:
(1)該地出租車的起步價是 元;
(2)當x>2時,求y與x之間的函數(shù)關系式;
(3)若某乘客有一次乘出租車的里程為18km,則這位乘客需付出租車車費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】志遠要在報紙上刊登廣告,一塊10cm×5cm的長方形版面要付廣告費180元,他要把該版面的邊長都擴大為原來的3倍,在每平方厘米版面廣告費相同的情況下,他該付廣告費( )
A.540元
B.1080元
C.1620元
D.1800元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某劇院的觀眾席的座位為扇形,且按下列分式設置:
排數(shù)(x) | 1 | 2 | 3 | 4 | … |
座位數(shù)(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當x每增加1時,y如何變化?
(2)寫出座位數(shù)y與排數(shù)x之間的關系式;
(3)按照上表所示的規(guī)律,某一排可能有90個座位嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小華利用含30°角的三角板測量樓房高度的示意圖,已知桌子高AB為1米,地面上B和D之間的距離為100米,則樓高CD約為( )
A.51米
B.59米
C.88米
D.174米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設點B的橫坐標為x,設點C的縱坐標為y,能表示y與x的函數(shù)關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com