【題目】已知,在以O為原點(diǎn)的直角坐標(biāo)系中,拋物線的頂點(diǎn)為A(1,4),且經(jīng)過(guò)點(diǎn)B(2,3),與x軸交于C、D兩點(diǎn).
(1)求直線OB的函數(shù)表達(dá)式和該拋物線的函數(shù)表達(dá)式;
(2)如圖1,點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PF⊥x軸于點(diǎn)F,交直線OB于點(diǎn)E.若PE=3EF,求出P點(diǎn)的橫坐標(biāo);
(3)如圖2,點(diǎn)M是拋物上的一個(gè)動(dòng)點(diǎn),且在直線OB的上方,過(guò)點(diǎn)M作x軸的平行線與直線OB交于點(diǎn)N,T是拋物線對(duì)稱軸上一點(diǎn),當(dāng)MN最大且△MDT周長(zhǎng)最小時(shí),直接寫出T的坐標(biāo).
【答案】(1) y=x2﹣2x+5;(2) P點(diǎn)的橫坐標(biāo)為4﹣; (3) T的坐標(biāo)為(1,3).
【解析】
(1)由B點(diǎn)坐標(biāo)利用待定系數(shù)法可求直線OB解析式,利用頂點(diǎn)式可求得拋物線解析式;
(2)設(shè)P(x,x2-2x+5),則可表示出E點(diǎn)坐標(biāo),由PE=3EF可得到方程解答即可;
(3)當(dāng)M與B關(guān)于拋物線的對(duì)稱軸對(duì)稱時(shí),MN最大,進(jìn)而得出T的坐標(biāo).
(1)設(shè)直線OB解析式為y=kx,由題意可得3=2k,解得k=1.5,
∴直線OB解析式為y=1.5x,
∵拋物線頂點(diǎn)坐標(biāo)為(1,4),
∴可設(shè)拋物線解析式為y=a(x﹣1)2+4,
∵拋物線經(jīng)過(guò)B(2,3),
∴3=a+4,解得a=1,
∴拋物線為y=x2﹣2x+5;
(2)設(shè)P(x,x2﹣2x+5),E點(diǎn)坐標(biāo)為(x,1.5x),
∵PE=3EF,
∴x2﹣2x+5=4×1.5x,
解得:,(不合題意,舍去)
P點(diǎn)的橫坐標(biāo)為4﹣.
(3)當(dāng)M與B關(guān)于拋物線的對(duì)稱軸對(duì)稱時(shí),MN最大,此時(shí)B與N重合,
此時(shí)M的坐標(biāo)為(0,3),
當(dāng)MT垂直對(duì)稱軸時(shí),△MDT周長(zhǎng)最小,
此時(shí)T的坐標(biāo)為(1,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC,若CE=5,則BC等于( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在y軸上,兩條對(duì)角線AC、OB的長(zhǎng)分別是6和4,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.
(1)寫出點(diǎn)A的坐標(biāo),并求k的值;
(2)將菱形OABC沿y軸向下平移多少個(gè)單位長(zhǎng)度后點(diǎn)A會(huì)落在該反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高節(jié)水意識(shí),小申隨機(jī)統(tǒng)計(jì)了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計(jì)圖.(單位:升)
(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個(gè)月(按30天計(jì)算)的節(jié)約用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是邊長(zhǎng)為8的等邊三角形,AD⊥BC于點(diǎn)D,DE⊥AB于點(diǎn)E.
(1)求證:AE=3EB
(2)若點(diǎn)F是AD的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn),連接PE,PF,如圖2所示,求PE+PF的最小值及此時(shí)BP的長(zhǎng);
(3)在(2)的條件下,連接EF,當(dāng)PE+PF取最小值時(shí),△PEF的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).
(1)求△AHO的周長(zhǎng);
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
【答案】(1)△AHO的周長(zhǎng)為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.
【解析】試題分析: (1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.
試題解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12;
(2)將A點(diǎn)坐標(biāo)代入y=(k≠0),得
k=-4×3=-12,
反比例函數(shù)的解析式為y=;
當(dāng)y=-2時(shí),-2=,解得x=6,即B(6,-2).
將A、B點(diǎn)坐標(biāo)代入y=ax+b,得
,
解得,
一次函數(shù)的解析式為y=-x+1.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.
【題型】解答題
【結(jié)束】
25
【題目】如圖,已知點(diǎn)A、C分別在∠GBE的邊BG、BE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點(diǎn)D,連接CD.
求證:①AB=AD;
②CD平分∠ACE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=﹣x+4與y軸、x軸分別交于
E、F,邊長(zhǎng)為2的等邊△ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移,在平移過(guò)程中,得到△A1B1C1,當(dāng)點(diǎn)B1與原點(diǎn)重合時(shí),解答下列問(wèn)題:
(1)求出點(diǎn)A1的坐標(biāo),并判斷點(diǎn)A1是否在直線l上;
(2)求出邊A1C1所在直線的解析式;
(3)在坐標(biāo)平面內(nèi)找一點(diǎn)P,使得以P、A1、C1、F為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示:有一個(gè)長(zhǎng)3米、寬2米、高4米的長(zhǎng)方體紙盒,一只小螞蟻從A點(diǎn)爬到B點(diǎn),那么這只螞蟻爬行的最短路徑為( )
A.米B.米C.米D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.
下列判斷:
①當(dāng)x>0時(shí),y1>y2;
②當(dāng)x<0時(shí),x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是或.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com