【題目】如圖,△ABC內(nèi)接于⊙O,AD是∠BAC的平分線(xiàn),交BC于點(diǎn)M,交⊙O于點(diǎn)D.則圖中相似三角形共有( )
A.2對(duì)
B.4對(duì)
C.6對(duì)
D.8對(duì)
【答案】C
【解析】解:∵AD是∠BAC的平分線(xiàn), ∴∠BAD=∠CAD,BD=CD,
∴∠BAD=∠CAD=∠DBC=∠DCB,
又∵∠BDA=∠MDB,∠CDA=∠MDC
∴△ABD∽△BDM;△ADC∽△CDM;
∵∠CAD=∠CBD,∠AMC=∠BMD,
∴△AMC∽△BMD,
∵∠BAD=∠MCD,∠AMB=∠CMD,
∴△ABM∽△CDM,
∵∠ABC=∠ADC,∠BAD=∠DAC,
∴△ABM∽△ADC,
∵∠ACB=∠ADB,∠BAD=∠CAD,
∴△ACM∽△ADB,
∴共有六對(duì)相似三角形,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識(shí),掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,以及對(duì)相似三角形的判定的理解,了解相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在長(zhǎng)方形ABCD中,AB=4,AD=6.延長(zhǎng)BC到點(diǎn)E,使CE=2,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為( )秒時(shí),△ABP和△DCE全等.
A. 1 B. 1或3 C. 1或7 D. 3或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(0,2)、B( ,2)、C(0,4),過(guò)點(diǎn)C向右作平行于x軸的射線(xiàn),點(diǎn)P是射線(xiàn)上的動(dòng)點(diǎn),連接AP,以AP為邊在其左側(cè)作等邊△APQ,連接PB、BA.若四邊形ABPQ為梯形,則:
(1)當(dāng)AB為梯形的底時(shí),點(diǎn)P的橫坐標(biāo)是;
(2)當(dāng)AB為梯形的腰時(shí),點(diǎn)P的橫坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)a∥b,且a與b之間的距離為4,點(diǎn)A到直線(xiàn)a的距離為2,點(diǎn)B到直線(xiàn)b的距離為3,AB.試在直線(xiàn)a上找一點(diǎn)M,在直線(xiàn)b上找一點(diǎn)N,滿(mǎn)足MN⊥a且AM+MN+NB的長(zhǎng)度和最短,則此時(shí)AM+NB=( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是用筆尖扎重疊的紙得到的成軸對(duì)稱(chēng)的圖案,請(qǐng)根據(jù)圖形寫(xiě)出:
(1)兩組對(duì)應(yīng)點(diǎn):__________和__________;
(2)兩組對(duì)應(yīng)線(xiàn)段:__________和__________;
(3)兩組對(duì)應(yīng)角:__________和__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,AD,BE分別為△ABC的角平分線(xiàn),連結(jié)DE.
(1)求證:點(diǎn)E到DA,DC的距離相等;
(2)求∠DEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下述命題中,真命題有( )
(1)對(duì)角線(xiàn)互相垂直的四邊形是菱形
(2)三個(gè)角的度數(shù)之比為1:3:4的三角形是直角三角形
(3)對(duì)角互補(bǔ)的平行四邊形是矩形
(4)三邊之比為1: :2的三角形是直角三角形.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO中,∠OAB=Rt∠,點(diǎn)A在x軸的正半軸,點(diǎn)B在第一象限,C,D分別是BO,BA的中點(diǎn),點(diǎn)E在CD的延長(zhǎng)線(xiàn)上.若函數(shù)y1= (x>0)的圖象經(jīng)過(guò)B,E,函數(shù)y2= (x>0)的圖象過(guò)點(diǎn)C,且△BCE的面積為1,則k2的值為( )
A.
B.
C.3
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,﹣3).
(1)求拋物線(xiàn)的解析式;
(2)如圖(1),己知點(diǎn)H(0,﹣1).問(wèn)在拋物線(xiàn)上是否存在點(diǎn)G (點(diǎn)G在y軸的左側(cè)),使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),拋物線(xiàn)上點(diǎn)D在x軸上的正投影為點(diǎn)E(﹣2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線(xiàn)段BD上的一點(diǎn),若∠EPF=∠BDF,求線(xiàn)段PE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com