【題目】如圖①,已知點(diǎn)E,F,G,H分別是四邊形ABCD各邊AB,BC,CDDA的中點(diǎn),求證四邊形FFG是平行四邊形.根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:

1)根據(jù)上述思路,請(qǐng)你寫(xiě)出完整的證明過(guò)程;

2)如圖,已知,分別以AB、AC為邊,在BC同側(cè)作等邊三角形ABD和等邊三角形ACE,連接CD,BF.可通過(guò)證明△________≌△________,得到

3)如圖③,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足,,點(diǎn)E,FG,H分別為邊AB,BCCD,DA的中點(diǎn),猜想四邊形EFGH的形狀,并證明.

【答案】1)見(jiàn)解析;(2ADC,ABE;(3)四邊形EFGH為菱形,理由見(jiàn)解析

【解析】

1)連接BD,根據(jù)三角形的中位線的性質(zhì)得到,,由平行四邊形的判定定理即可得到結(jié)論;

2)先利用等邊三角形的性質(zhì)得AD=AB,AC=AE,∠BAD=CAE=60°,則∠DAC=BAE,于是根據(jù)證得,從而得到結(jié)論;

3)連接AC、BD,如圖3,先證明△PBD≌△APC得到BD=AC,再利用三角形中位線性質(zhì)得到HG=HE,接著根據(jù)(1)中結(jié)論和菱形的判定方法可判斷四邊形EFGH為菱形.

1)∵點(diǎn)E,F,GH分別是四邊形ABCD各邊AB,BC,CD,DA的中點(diǎn),

EH的中位線,FG的中位線,

,,

,,

∴四邊形EFGH是平行四邊形;

2ADC,ABE;

理由是:

都是等邊三角形,

,,,

,即,

中,

,

3)四邊形EFGH為菱形

如圖,連接AC、BD

,

,即,

中,,

,

,

,,

∵由(1)中的結(jié)論可知,四邊形EFGH為平行四邊形,

∴四邊形EFCH為菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于.經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù)關(guān)系,當(dāng)銷售單價(jià)為元時(shí)銷售量為件,當(dāng)銷售單價(jià)為元時(shí)銷售量為件.

1)此試銷期間銷售量可能為嗎?說(shuō)明理由.

2)銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:

)若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?

)若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前微信、支付寶共享單車網(wǎng)購(gòu)給我們的生活帶來(lái)了很多便利,九年級(jí)數(shù)學(xué)興趣小組在校內(nèi)對(duì)你最認(rèn)可的四大新生事物進(jìn)行調(diào)查,隨機(jī)調(diào)查了m人(每名學(xué)生必選一種且只能從這四種中選擇一種),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)根據(jù)圖中信息求出m   ,n   

2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;

3)已知A、B兩位同學(xué)都最認(rèn)可微信C同學(xué)最認(rèn)可支付寶,D同學(xué)最認(rèn)可網(wǎng)購(gòu),從這四名同學(xué)中抽取兩名同學(xué),請(qǐng)你通過(guò)樹(shù)狀圖或表格,求出這兩位同學(xué)最認(rèn)可的新生事物不一樣的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PEABE,PFACF,MEF中點(diǎn),則AM的最小值為 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仙桃是遂寧市某地的特色時(shí)令水果.仙桃一上市,水果店的老板用2400元購(gòu)進(jìn)一批仙桃,很快售完;老板又用3700元購(gòu)進(jìn)第二批仙桃,所購(gòu)件數(shù)是第一批的倍,但進(jìn)價(jià)比第一批每件多了5元.

1)第一批仙桃每件進(jìn)價(jià)是多少元?

2)老板以每件225元的價(jià)格銷售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷.要使得第二批仙桃的銷售利潤(rùn)不少于440元,剩余的仙桃每件售價(jià)至少打幾折?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn),,,連接得到四邊形.點(diǎn)在邊上,連接,將邊沿折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),若點(diǎn)到四邊形較長(zhǎng)兩對(duì)邊的距離之比為.則點(diǎn)的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ykxb(k0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)y的圖象交于AB兩點(diǎn),過(guò)點(diǎn)BBEx軸于點(diǎn)E,已知A點(diǎn)坐標(biāo)是(2,4),BE2

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)連接OA、OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四邊形ABCD中,ADBC,CDBC,∠ABC60°,且AD12BC18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t6

1)當(dāng)t6時(shí),cosBPC   ;

2)當(dāng)△BPC的外接圓與AD相切時(shí),求t的值;

3)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,cosBPC是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案