1、若四邊形ABCD中,∠A:∠B:∠C:∠D=1:3:5:6,則∠A,∠D的度數(shù)分別為( 。
分析:因為四邊形的內角和是360°,而∠A:∠B:∠C:∠D=1:3:5:6,則可以設∠A是x度,則∠B是3x度,∠C是5x度,∠D是6x度,列出方程即可求解.
解答:解:設∠A=x度,則∠B=3x度,∠C=5x度,∠D=6x度,則有
x+3x+5x+6x=360,
解得x=24.
6x=144.
則∠A,∠D的度數(shù)分別為24度、144度.
故選B.
點評:本題考查了四邊形的內角和.解決本題的關鍵是根據(jù)多邊形的內角和定理列出方程進而求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、若四邊形ABCD中,∠A:∠B:∠C=1:2:4,且∠D=108°,則∠A+∠C的度數(shù)等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、我們把依次連接任意一個四邊形各邊中點所得的四邊形叫做中點四邊形.若四邊形ABCD中AC=BD,則四邊形ABCD的中點四邊形是
菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若四邊形ABCD中,對角線AC、BD交于點O,AB∥CD,且AB=CD=16cm,AC=18cm,則BD的取值范圍是
14cm<BD<50cm
14cm<BD<50cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖20,四邊形ABCD中有兩點E、F,使A、B、C、D、E、F中任意三點都不在同一條直線上,連接它們的頂點,得若干線段,把四邊形分成若干個互不重疊的三角形,則所有這些三角形的內角和為______;同樣,若四邊形ABCD中有n個點,其中任意三點都不在同一條直線上,以A、B、C、D和這n個點為頂點作成若干個互不重疊的三角形,則所有這些三角形的內角和為_________.

查看答案和解析>>

同步練習冊答案