【題目】1)已知,則的值為_____________

2)已知中,不含項(xiàng)和項(xiàng),則=______

【答案】 4

【解析】

1)根據(jù)冪的乘方法則,底數(shù)不變,指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,逆用性質(zhì)即可求解.

2)先根據(jù)多項(xiàng)式乘以多項(xiàng)式法則展開,合并同類項(xiàng),得出方程,求出即可.

1)∵am=3,an=5,
a3m-2n=a3m÷a2n,
=am3÷an2
=33÷52,
=

2)(x2+mx+n)(x+2
=x3+2x2+mx2+2mx+nx+2n
=x3+2+mx2+2m+nx+2n,
∵(x2+mx+n)(x+2)的結(jié)果中不含x2項(xiàng)和x項(xiàng),
2+m=02m+n=0,
解得:m=-2,n=4

故答案為:,4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請(qǐng)連接AC,BD,求證:AC垂直平分BD;

(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動(dòng)點(diǎn),且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;

(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,,且滿足方程組,連接

1)求的面積;

2)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿軸向左運(yùn)動(dòng),連接,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒, 的面積為 試用含的式子表示;

3)在的條件下,點(diǎn),點(diǎn)上一點(diǎn),連接,點(diǎn)延長線上,且,連接, 當(dāng)點(diǎn)軸負(fù)半軸上,, 四邊形的面積與的面積比為時(shí),求此時(shí)值和點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了進(jìn)一步改進(jìn)本校七年級(jí)數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級(jí)所有班級(jí)中,每班隨機(jī)抽取了6名學(xué)生,并對(duì)他們的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡,針對(duì)這個(gè)題目,問卷時(shí)要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng))結(jié)果進(jìn)行了統(tǒng)計(jì),現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.


請(qǐng)你根據(jù)以上提供的信息,解答下列問題:

(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)所抽取學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是  ;

(3)若該校七年級(jí)共有960名學(xué)生,請(qǐng)你估算該年級(jí)學(xué)生中對(duì)數(shù)學(xué)學(xué)習(xí)不太喜歡的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由.
(2)過點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若AC=2,⊙O的半徑是3,求∠BEC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價(jià)7元出售,很快售完.由于該書暢銷,第二次購書時(shí),每本書的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,當(dāng)按定價(jià)售出200本時(shí),出現(xiàn)滯銷,便以定價(jià)的4折售完剩余的書.

1)第一次購書的進(jìn)價(jià)是多少元?

2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因?yàn)?/span>,所以.這說明能被整除,同時(shí)也說明多項(xiàng)式有一個(gè)因式為;另外,當(dāng)多項(xiàng)式的值為.閱讀上述材料回答問題:

1)由可知,當(dāng)_時(shí),多項(xiàng)式的值為;

2)一般地,如果一個(gè)關(guān)于字母的多項(xiàng)式當(dāng)時(shí),的值為,那么與代數(shù)式之間有一定的關(guān)系,這種關(guān)系是:_____;

3)已知關(guān)于的多項(xiàng)式能被整除,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)E為AD上一點(diǎn),連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);

(3)如圖3,在(2)的條件下,延長CE交⊙O于點(diǎn)G,若tan∠BAC= ,EG=2,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案