【題目】如圖,四邊形ABCD是平行四邊形,AE平分∠BAD,交DC的延長線于點E,AB=3,EF=0.8,AF=2.4.求AD的長.

【答案】4

【解析】

由平行四邊形的性質(zhì)得出ABCD,則△ABF∽△ECF,由該相似三角形的對應(yīng)邊成比例求得CE=1;ABCD得出內(nèi)錯角相等∠E=∠BAE,再由角平分線等量代換證出∠E=∠DAE,即可得出結(jié)論AD=DE=4.

解:∵四邊形ABCD為平行四邊形,

AB=DC=3,ABDE

∴△ABF∽△ECF,

=

AB=3,EF=0.8,AF=2.4,

,

CE=1,

DE=DC+CE=3+1=4.

ABDE,

∴∠BAE=E

AE平分∠BAD,

∴∠BAE=DAE

∴∠E=DAE

AD=DE=4.

AD的長為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補充完整:

(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=   

(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.

(3)探究函數(shù)圖象發(fā)現(xiàn):

①函數(shù)圖象與x軸有   個交點,所以對應(yīng)的方程x2﹣2|x|=0有   個實數(shù)根;

②方程x2﹣2|x|=   個實數(shù)根;

③關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場花9萬元從廠家購買A型和B型兩種型號的電視機共50臺,其中A型電視機的進(jìn)價為每臺1500元,B型電視機的進(jìn)價為每臺2500元.

(1)求該商場購買A型和B型電視機各多少臺?

(2)若商場A型電視機的售價為每臺1700元,B型電視機的售價為每臺2800元,不考慮其他因素,那么銷售完這50臺電視機該商場可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離0.7米,頂端到地面距離2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端到地面距離2米,求小巷的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,BAD的平分線交BC于點E,交DC的延長線于點F,BGAE于G,BG=,則梯形AECD的周長為( )

A.22 B.23 C.24 D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2PAC上的一個動點.

(1)當(dāng)點P運動到∠ABC的平分線上時,連接DP,求DP的長;

(2)當(dāng)點P在運動過程中出現(xiàn)PDBC時,求此時∠PDA的度數(shù);

(3)當(dāng)點P運動到什么位置時,以D,PB,Q為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時□DPBQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBE是高,∠ABE=45°,點FAB的中點,ADFE,BE分別交于點G、H.有下列結(jié)論:①FD=FE;AH=2CD;BCAD=AE2;SABC=2SADF.其中正確結(jié)論的序號是_____.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,是等邊三角形,,且兩個頂點、分別在軸,軸上滑動,連接,則的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊△ABC中,E、D兩點分別在邊AB、BC上,BE=CDAD、CE相交于點F

1)求∠AFE的度數(shù);

2)過點AAHCEH,求證:2FH+FD=CE

3)如圖2,延長CE至點P,連接BP,∠BPC=30°,且CF=CP,求的值.

(提示:可以過點A作∠KAF=60°,AKPC于點K,連接KB

查看答案和解析>>

同步練習(xí)冊答案