【題目】尺規(guī)作圖:作點(diǎn)A關(guān)于直線l的對稱點(diǎn)A'.

已知:直線l和l外一點(diǎn)A.

求作:點(diǎn)A關(guān)于l的對稱點(diǎn)A'.

作法:①在l上任取一點(diǎn)P,以點(diǎn)P為圓心,PA長為半徑作孤,交l于點(diǎn)B;②以點(diǎn)B為圓心,AB長為半徑作弧,交弧AB于點(diǎn)A'. 點(diǎn)A'就是所求作的對稱點(diǎn).

由步驟①,得________

由步驟②,得________

將橫線上的內(nèi)容填寫完整,并說明點(diǎn)A與A'關(guān)于直線l對稱的理由________.

【答案】PA=PB ;AB=BA' ;根據(jù)線段相等,即可證明三角形全等,證明對稱 .

【解析】

由①的作圖步驟可知AB均為以P為圓心的圓上,所以PAPB都為園的半徑相等;

由②同理也可知A'既在以P為圓心的圓上也在以B為圓心的圓上,所以AB= A'B,P A'=PB=PA,可知三角形APB≌三角形A'PB,所以AA'關(guān)于直線l對稱.

解:由①的作圖步驟可知AB均為以P為圓心的圓上,所以PAPB都為園的半徑相等;由②同理也可知A'既在以P為圓心的圓上也在以B為圓心的圓上,所以AB= A'BP A'=PB=PA,而PB為三角形APB、三角形A'PB的共邊,可知三角形APB≌三角形A'PB,所以AA'關(guān)于直線l對稱.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認(rèn)真觀察如下圖形:

當(dāng)時(shí),長方形分為2個(gè)直角三角形;

當(dāng)時(shí),長方形分為8個(gè)直角三角形;

當(dāng)時(shí),長方形分為18個(gè)直角三角形;

……

依此規(guī)律,第個(gè)圖形中,長方形被分成______個(gè)小直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題再現(xiàn):

數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想方法,借助這種思想方法可將抽象的數(shù)學(xué)知識(shí)變得直觀并且具有可操作性.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.

例如:利用圖形的幾何意義驗(yàn)證完全平方公式.

將一個(gè)邊長為的正方形的邊長增加,形成兩個(gè)長方形和兩個(gè)正方形,如圖所示:這個(gè)圖形的面積可以表示成:

這就驗(yàn)證了兩數(shù)和的完全平方公式.

類比解決:

請你類比上述方法,利用圖形的幾何意義驗(yàn)證平方差公式.

(要求畫出圖形并寫出推理過程)

問題提出:如何利用圖形幾何意義的方法證明?

如圖所示,表示1個(gè)1×1的正方形,即:,表示1個(gè)2×2的正方形,恰好可以拼成1個(gè)2×2的正方形,因此:、就可以表示2個(gè)2×2的正方形,即:、、恰好可以拼成一個(gè)的大正方形.

由此可得:.

嘗試解決:

請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:_______.(要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).

問題拓廣:

請用上面的表示幾何圖形面積的方法探究:_______.(直接寫出結(jié)論即可,不必寫出解題過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,對角線AC的垂直平分線EFACO,分別交BCAD于點(diǎn)E、F

1)求證:四邊形AECF是菱形;

2)若AB=4BC=8,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小梅騎自行車去外婆家,從家出發(fā)小時(shí)后到達(dá)甲地,在甲地游玩一段時(shí)間后,按原速繼續(xù)前進(jìn),小梅出發(fā)小時(shí)后,爸爸騎摩托車沿小梅騎自行車的路線追趕小梅,如圖是他們離家的路程(千米)與小梅離家時(shí)間(小時(shí))的關(guān)系圖,已知爸爸騎摩托車的速度是小梅騎自行車速度的倍。

1)小梅在甲地游玩時(shí)間是_________小時(shí),小梅騎車的速度是_________千米/小時(shí).

2)若爸爸與小梅同時(shí)到達(dá)外婆家,求小梅家到外婆家的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1A型車和3B型車,銷售額為96萬元;本周已售出2A型車和1B型車,銷售額為62萬元.

1)求每輛A型車和B型車的售價(jià)各為多少萬元?

2)甲公司擬向該店購買AB兩種型號(hào)的新能源汽車共6輛,且A型號(hào)車不少于2輛,購車費(fèi)不少于130萬元,則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(用配方法解方程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大棚中栽培新品種的蘑菇,在18℃的條件下生長最快,因此用裝有恒溫系統(tǒng)的大棚栽培,如圖是某天恒溫系統(tǒng)從開啟升溫到保持恒溫及關(guān)閉.大棚內(nèi)溫度y(℃)隨時(shí)間x(時(shí))變化的函數(shù)圖像,其中BC段是函數(shù)yk0)圖像的一部分.

1)分別求出0≤x≤2x≥12時(shí)對應(yīng)的yx的函數(shù)關(guān)系式;

2)若該蘑菇適宜生長的溫度不低于12℃,則這天該種蘑菇適宜生長的時(shí)間是多長?

查看答案和解析>>

同步練習(xí)冊答案