【題目】如圖,反比例函數(shù)y=(x>0)與直線AB交于點A(2,3),直線AB與x軸交于點B(4,0),過點B作x軸的垂線BC交反比例函數(shù)的圖象于點C,在平面內有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,則平行四邊形ABCD的面積為____________.
【答案】3
【解析】
先將A點的坐標代入反比例函數(shù)求得k的值,然后將x=4代入反比例函數(shù)解析式求得相應的y的值,即得點C的坐標;然后結合圖象分類討論以A、B、C、D為頂點的平行四邊形,如圖所示,找出滿足題意的D的坐標,分三種情形求出平行四邊形ABCD的面積即可.
把點A(2,3)代入y=(x>0)得:k=xy=6,
故該反比例函數(shù)解析式為:y=.
∵點B(4,0),BC⊥x軸,
∴把x=4代入反比例函數(shù)y=,得
y=.
則C(4,).
①如圖,當四邊形ACBD為平行四邊形時,AD∥BC且AD=BC.
∵A(2,3)、B(4,0)、C(4,),
∴點D的橫坐標為2,yA-yD=yC-yB,故yD=.
所以D(2,),
延長AD交x軸于點E,則,
平行四邊形ABCD的面積=梯形AEBC的面積-三角形DBE的面積
=
=3;
②如圖,當四邊形ABCD′為平行四邊形時,AD′∥CB且AD′=CB.
∵A(2,3)、B(4,0)、C(4,),
∴點D′的橫坐標為2,yD′-yA=yC-yB,故yD′=.
所以D′(2,),
平行四邊形ABCD′的面積=梯形AFBC的面積-三角形ABF的面積
=
=6-3
=3;
③如圖,當四邊形ABD″C為平行四邊形時,AC=BD″且AC∥BD″.
∵A(2,3)、B(4,0)、C(4,),
∴平行四邊形ABD″C的面積=(梯形AGBC的面積-三角形ABG的面積)×2
=(
=3.
綜上所述,平行四邊形ABCD的面積為3.
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】對于平面上A、B兩點,給出如下定義:以點A為中心,B為其中一個頂點的正方形稱為點A、B的“領域”.
(1)已知點A的坐標為(﹣1,1),點B的坐標為(3,3),頂點A、B的“領域”的面積為 .
(2)若點A、B的“領域”的正方形的邊與坐標軸平行或垂直,回答下列問題:
①已知點A的坐標為(2,0),若點A、B的“領域”的面積為16,點B在x軸上方,求B點坐標;
②已知點A的坐標為(2,m),若在直線l:y=﹣3x+2上存在點B,點A、B的“領域”的面積不超過16,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象交于點A(﹣2,6)、點B(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)點E為y軸上一個動點,若S△AEB=5,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請畫出△ABC關于y軸對稱的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學數(shù)學興趣小組在一次課外學習與探究中遇到一些新的數(shù)學符號,他們將其中某些材料摘錄如下:
對于三個實數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù),例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1)=1.請結合上述材料,解決下列問題:
(1)①M{(﹣2)2,22,﹣22}= .②min{2,3,4}= .
(2)若min(3﹣2x,1+3x,﹣5)=﹣5,則x的取值范圍為 .
(3)若M{﹣2x,x2,3}=2,求x的值.
(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線PQ的同側有兩點M,N,點T在直線PQ上,若∠MTP=∠NTQ,則稱點M,N為關于直線PQ的衍射點.如圖2,BD是矩形ABCD的對角線,E是邊BC延長線上的一點,且CE=BC,連接AE交CD于點F,交BD于點P,連接BF,CP.
(1)求證:點A,B是關于直線CD的衍射點.
(2)若點C,F是關于直線BD的衍射點,CP=2PF=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=( )
A、 B、 C、 D、
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.
(1)求、的值;
(2)如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;
(3)如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最?如果存在,求出點的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點B(0,4),等邊三角形OAB的頂點A在反比例函數(shù)y=(x>0)的圖象上.
(1)求反比例函數(shù)的表達式;
(2)把△OAB沿y軸向上平移a個單位長度,對應得到△O'A'B'.當這個函數(shù)的圖象經過△O'A'B'一邊的中點時,求a的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com