【答案】解:(1)∵D(-8,0),∴B點的橫坐標為-8,代入中,得y=-2.
∴B點坐標為(-8,-2).而A、B兩點關(guān)于原點對稱,∴A(8,2).
從而.
(2)∵N(0,-n),B是CD的中點,A、B、M、E四點均在雙曲線上,
∴,B(-2m,-),C(-2m,-n),E(-m,-n).
S矩形DCNO,S△DBO=,S△OEN =,
∴S四邊形OBCE= S矩形DCNO-S△DBO- S△OEN=k.∴.
由直線及雙曲線,得A(4,1),B(-4,-1),
∴C(-4,-2),M(2,2).
設(shè)直線CM的解析式是,由C、M兩點在這條直線上,得
解得.
∴直線CM的解析式是.
(3)如圖,分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1、M1.
設(shè)A點的橫坐標為a,則B點的橫坐標為-a.于是
.
同理,
∴.
【解析】(1)根據(jù)B點的橫坐標為-8,代入中,得,得出B點的坐標,即可得出A點的坐標,再根據(jù)求出即可;
分別作⊥軸,⊥軸,垂足分別為,設(shè)A點的橫坐標為,則B點的橫坐標為,于是,同理,即可得到結(jié)果。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生數(shù)學(xué)興趣小組為了解本校同學(xué)對上課外補習(xí)班的態(tài)度,在學(xué)校抽取了部分同學(xué)進行了問卷調(diào)查,調(diào)查分別為“A﹣非常贊同”、“B﹣贊同”、“C﹣無所謂”、“D﹣不贊同”等四種態(tài)度,現(xiàn)將調(diào)查統(tǒng)計結(jié)果制成了如圖兩幅統(tǒng)計圖,請結(jié)合兩幅統(tǒng)計圖,回答下列問題:
(1)抽取了多少名同學(xué)進行了問卷調(diào)查?
(2)請補全條形統(tǒng)計圖.
(3)持“不贊同”態(tài)度的學(xué)生人數(shù)的百分比所占扇形的圓心角為 度.
(4)若該校有3000名學(xué)生,請你估計該校學(xué)生對持“贊同”和“非常贊同”兩種態(tài)度的人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1) ,折疊平行四邊形,使得分別落在邊上的點,為折痕
(1)若,證明:平行四邊形是菱形;
(2)若 ,求的大小;
(3)如圖(2) ,以為鄰邊作平行四邊形,若,求的大小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(觀察思考):
如圖,線段上有兩個點,圖中共有_________條線段;
(2)(模型構(gòu)建):
如果線段上有個點(包括線段的兩個端點),則該線段上共有___________條線段;
(3)(拓展應(yīng)用):
某班8位同學(xué)參加班上組織的象棋比賽,比賽采用單循環(huán)制(即每兩位同學(xué)之間都要進行一場比賽),那么一共要進行__________場比賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,王老師出示一道題:解方程.小馬立即舉手并在黑板上寫出了解方程過程,具體如下:
解:,
去括號,得:.………………①
移項,得:.…………………②
合并同類項,得:.……………………③
系數(shù)化為1,得:.………………………④
(1)請你寫出小馬解方程過程中哪步錯了,并簡要說明錯誤原因;
(2)請你正確解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上有兩個動點M,N,如果點M始終在點N的左側(cè),我們稱作點M是點N的“追趕點”.如圖,數(shù)軸上有2個點A,B,它們表示的數(shù)分別為-3,1,已知點M是點N的“追趕點”,且M,N表示的數(shù)分別為m,n.
(1)由題意得:點A是點B的“追趕點”,AB=1-(-3)=4(AB表示線段AB的長,以下相同);類似的,MN=____________.
(2)在A,M,N三點中,若其中一個點是另外兩個點所構(gòu)成線段的中點,請用含m的代數(shù)式來表示n.
(3)若AM=BN,MN=BM,求m和n值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】,是平面直角坐標系中的任意兩點,我們把叫做P1,P2兩點間的“直角距離”,記作d(P1,P2);比如:點P(2,-4),Q(1,0),則d(P,Q)=,已知Q(2,1),動點P(x,y)滿足d(P,Q)=3,且x,y均為整數(shù),則滿足條件的點P有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com