(本題滿分12分)

情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.

觀察圖2可知:與BC相等的線段是      ,∠CAC′=      °.

問題探究:如圖3,△ABC中,AGBC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰RtABE和等腰RtACF,過點EF作射線GA的垂線,垂足分別為P、Q.試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸:如圖4,△ABC中,AGBC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GAEF于點H. 若AB=k AE,AC=k AF,試探究HEHF之間的數(shù)量關(guān)系,并說明理由.

 

解:情境觀察

AD(或A′D,90 

問題探究

結(jié)論:EP=FQ

證明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.

∴∠BAG+∠EAP=90°.∵AGBC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.

EPAG,∴∠AGB=∠EPA=90°,∴RtABGRtEAP. ∴AG=EP.

同理AG=FQ.  ∴EP=FQ.

拓展延伸

結(jié)論: HE=HF

理由:過點EEPGA,F(xiàn)Q⊥GA,垂足分別為P、Q.

∵四邊形ABME是矩形,∴∠BAE=90°,

∴∠BAG+∠EAP=90°.AGBC,∴∠BAG+∠ABG=90°,

∴∠ABG=∠EAP.

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

問題情境

已知矩形的面積為aa為常數(shù),a>0),當該矩形的長為多少時,它的周長最。孔钚≈凳嵌嗌?

數(shù)學(xué)模型

設(shè)該矩形的長為x,周長為y,則yx的函數(shù)關(guān)系式為

探索研究

⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).

①  填寫下表,畫出函數(shù)的圖象:

x

1

2

3

4

y

 

 

 

 

 

 

 

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);

③在求二次函數(shù)y=ax2bxca≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)(x>0)的最小值.

解決問題

⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)
問題情境
已知矩形的面積為aa為常數(shù),a>0),當該矩形的長為多少時,它的周長最?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則yx的函數(shù)關(guān)系式為
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
① 填寫下表,畫出函數(shù)的圖象:
x




1
2
3
4

y

 
 
 
 
 
 
 

②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2bxca≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)(x>0)的最小值.
解決問題
⑵用上述方法解決“問題情境”中的問題,直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(江蘇鹽城卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)
情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是    ,∠CAC′=    °.

問題探究:如圖3,△ABC中,AGBC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰RtABE和等腰RtACF,過點E、F作射線GA的垂線,垂足分別為PQ. 試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸:如圖4,△ABC中,AGBC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GAEF于點H. 若AB= k AEAC= k AF,試探究HEHF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣東珠海卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)

情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.

觀察圖2可知:與BC相等的線段是      ,∠CAC′=      °.

問題探究:如圖3,△ABC中,AGBC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰RtABE和等腰RtACF,過點EF作射線GA的垂線,垂足分別為PQ. 試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸:如圖4,△ABC中,AGBC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GAEF于點H. 若AB= k AE,AC= k AF,試探究HEHF之間的數(shù)量關(guān)系,并說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案