如圖,點O是∠ABC的外心,∠A=50°,則∠BOC的度數(shù)是
A.115°B.130° C.100°D.120°
C
分析:已知了點O是△ABC的外心,那么∠A、∠BOC即為同弧所對的圓周角和圓心角,根據(jù)圓周角定理即可得到∠BOC的度數(shù).
解答:解:由于點O是△ABC的外心,所以在△ABC的外接圓⊙O中,
∠BAC、∠BOC同對著弧BC;
由圓周角定理得:∠BOC=2∠BAC=100°,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,于點過圓心,且與相交于兩點,連結(jié),若的半徑為,,則的長度為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分5分)
已知:如圖,AB是⊙O的直徑,CD是⊙O的弦,ABCD,垂足為E,聯(lián)結(jié)OC, OC=5.

(1)若CD=8,求BE的長;
(2)若∠AOC=150°,求扇形OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O1與⊙O2外切于點A,⊙O1的半徑R=2,⊙O2的半徑r=1,若半徑為4的⊙C與 ⊙O1、⊙O2都相切,則滿足條件的⊙C有(    )
   
A.2個B.4個C.5個D.6個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題:①長度相等的弧是等弧 ②任意三點確定一個圓 ③相等的圓心角所對的弦相等 ④外心在三角形的一條邊上的三角形是直角三角形,其中真命題共有(    )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖已知⊙O中,MN是直徑,AB是弦,MN⊥AB,垂足是C,由這 些條件可以推出結(jié)論_______________。(不添加輔助線,只寫出一個結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點A、B、C都在⊙O上,(    )

A.40°          B.50°          C.80°       D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知的直徑,上一點,、,以為圓心,為半徑的圓與相交于、兩點,弦.則的值是(    )
A.24B.9C.36D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙O1和⊙O2的半徑分別為3cm和4cm, 且O1 O2 = 8cm,則⊙O1與⊙O2的位置關(guān)系
是(   )
A.外離B.相交C.相切D.內(nèi)含

查看答案和解析>>

同步練習(xí)冊答案