【題目】如圖①,在△ABC中,∠BAC=90', AB=AC, AE是過點(diǎn)A的一條直線,且點(diǎn)B, C在AE的異側(cè),BD⊥AE于點(diǎn)D, CE⊥AE于點(diǎn)E.
(1)求證: BD=DE +CE ;
(2)若當(dāng)直線AE旋轉(zhuǎn)到圖②位置時(shí),判斷BD與DE,CE的數(shù)量關(guān)系,并說明理由.
【答案】(1)詳見解析;(2)BD=DE-CE,理由詳見解析.
【解析】
(1)在直角三角形中,由題中條件可得∠ABD=EAC,AB=AC,則可判定Rt△BDA≌Rt△AEC,由三角形全等可得三角形對(duì)應(yīng)邊相等,進(jìn)而通過線段之間的轉(zhuǎn)化,可得出結(jié)論;
(2)由題中條件同(1)可證Rt△BDA≌Rt△AEC,得出對(duì)應(yīng)線段相等,進(jìn)而可得線段之間的關(guān)系.
(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠EAC=90,
∴∠ABD=∠EAC,
在Rt△BDA和Rt△AEC中,,
∴Rt△BDA≌Rt△AEC(AAS),
∴BD=AE,AD=CE,
∴BD=AE=AD+DE=DE +CE;
(2)BD=DECE,
理由:∵∠BAC=90°,BD⊥AE,CE⊥AE
∴∠ABD+∠BAD=90°,∠BAD+∠EAC=90°,
∴∠ABD=∠EAC,
在Rt△BDA和Rt△AEC中,,
∴Rt△BDA≌Rt△AEC(AAS),
∴BD=AE,AD=CE,
∴BD=AE=DEAD=DECE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c,a是多項(xiàng)式2x24x+1的一次項(xiàng)系數(shù),b是最小的正整數(shù),單項(xiàng)式x2y4的次數(shù)為c.
(1)a=___,b=___,c=___;
(2)若將數(shù)軸在點(diǎn)B處折疊,則點(diǎn)A與點(diǎn)C___重合(填“能”或“不能”);
(3)點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)C以每秒1個(gè)單位長度的速度向右運(yùn)動(dòng),同時(shí),點(diǎn)A和點(diǎn)B分別以每秒3個(gè)單位長度和2個(gè)單位長度的速度向左運(yùn)功,t分鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)B與點(diǎn)C之間的距離表示為BC,則AB=___,BC=___(用含t的代數(shù)式表示);
(4)請(qǐng)問:3ABBC的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長都為 1,△ABC 的頂點(diǎn)都在格點(diǎn)上.
(1)判斷△ABC 是什么形狀,并說明理由.
(2)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在四邊形中,,,、分別是邊、上的點(diǎn),若,可求得、、之間的數(shù)量關(guān)系為______.(只思考解題思路,完成填空即可,不必書寫證明過程)
(2)如圖2,在四邊形中,,,、分別是邊、延長線上的點(diǎn),若,判斷、、之間的數(shù)量關(guān)系還成立嗎,若成立,請(qǐng)完成證明,若不成立,請(qǐng)說明理由.(可借鑒第(1)問的解題經(jīng)驗(yàn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)求證:①△ADC≌△CEB;②DE=AD+BE.
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 直線MN與直線PQ垂直相交于O,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng).
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值;
(2)如圖2,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線相交于E、F,則∠EAF=______°;在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)表示的數(shù)是,點(diǎn)表示的數(shù)是,則線段的長表示為.例如:數(shù)軸上點(diǎn)表示的數(shù)是5,點(diǎn)表示的數(shù)是2,則線段的長表示為.
(1)點(diǎn)表示的數(shù)是3,線段的長可表示為______.
(2)若,______.
(3)數(shù)軸上的任意一點(diǎn)表示的數(shù)是,且的最小值為5,若,則的值為______.
(4)如圖,在數(shù)軸上點(diǎn)在點(diǎn)的右邊,,若代數(shù)式與互為相反數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠BEO的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠E=∠F=90°,∠B=∠C,AE=AF,下列結(jié)論不正確的結(jié)論是( )
A.CD=DN;B.∠1=∠2;C.BE=CF;D.△ACN≌△ABM.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com