【題目】如圖,邊長為1的正五邊形ABCDE,頂點(diǎn)A、B在半徑為1的圓上,其它各點(diǎn)在圓內(nèi),將正五邊形ABCDE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E第一次落在圓上時(shí),則點(diǎn)C轉(zhuǎn)過的度數(shù)為 .
【答案】12°
【解析】解:如圖設(shè)圓心為O,連接OA、OB,點(diǎn)E落在圓上的點(diǎn)E′處. ∵AB=OA=OB,
∴∠OAB=60°,同理∠OAE′=60°,
∵∠EAB=108°,
∴∠EAO=∠EAB﹣∠OAB=48°,
∴∠EAE′=∠OAE′﹣∠EAO=60°﹣48°=12°,
∵點(diǎn)E旋轉(zhuǎn)的角度和點(diǎn)C旋轉(zhuǎn)的角度相等,
∴點(diǎn)C旋轉(zhuǎn)的角度為12°,
所以答案是12°.
【考點(diǎn)精析】掌握正多邊形和圓是解答本題的根本,需要知道圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)在邊長為1的正方形網(wǎng)格中,已知A(﹣1,﹣1),B(4,﹣1),C(3,1).
(1)畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點(diǎn),不寫畫法);
(2)分別寫出A′,B′,C′三點(diǎn)的坐標(biāo);
(3)請寫出所有以AB為邊且與△ABC全等的三角形的第三個(gè)頂點(diǎn)(不與C重合)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)體戶購進(jìn)一批時(shí)令水果,20天銷售完畢,他將本次銷售情況進(jìn)行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)繪制如下的函數(shù)圖象,其中日銷售量y(千克)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系如圖(1)所示,銷售單價(jià)p(元/千克)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系如圖(2)所示。(銷售額=銷售單價(jià)×銷售量)
(1)直接寫出y與x之間的函數(shù)解析式;
(2)分別求第10天和第15天的銷售額;
(3)若日銷售量不低于24千克的時(shí)間段為“最佳銷售期”,則此次銷售過程中,“最佳銷售期”共有多少天?在此期間銷售單價(jià)最高為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息: 請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價(jià)﹣進(jìn)貨單價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連接BE、CE.
若a=5,sin∠ACB= ,解答下列問題:
(1)填空:b=;
(2)當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長;
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過程中,使得△ABE與△BCE相似時(shí),請寫x、a、b三者的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為一段圓弧形彎道,彎道長12π米,圓弧所對的圓心角是81°.
(1)用直尺和圓規(guī)作出圓弧所在的圓心O;(不寫作法,保留作圖痕跡)
(2)求這段圓弧的半徑R.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標(biāo)準(zhǔn)板材.一張標(biāo)準(zhǔn)板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
裁法一 | 裁法二 | 裁法三 | |
A型板材塊數(shù) | 1 | 2 | 0 |
B型板材塊數(shù) | 2 | M | N |
設(shè)所購的標(biāo)準(zhǔn)板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.
(1)上表中,m= ,n= ;
(2)分別求出y與x和z與x的函數(shù)關(guān)系式;
(3)若用Q表示所購標(biāo)準(zhǔn)板材的張數(shù),求Q與x的函數(shù)關(guān)系式,并指出當(dāng)x取何值時(shí)Q最小,此時(shí)按三種裁法各裁標(biāo)準(zhǔn)板材多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+2k﹣2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),求該方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=﹣x﹣b分別與x,y軸交于A(6,0)、B兩點(diǎn),過點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線BC的解析式;
(3)直線EF:y=2x﹣k(k≠0)交AB于E,交BC于點(diǎn)F,交x軸于點(diǎn)D,是否存在這樣的直線EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com