【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( 。┢椒矫祝

A. 96 B. 204 C. 196 D. 304

【答案】A

【解析】連接AC,運(yùn)用勾股定理逆定理可證△ACD,△ABC為直角三角形,可求出兩直角三角形的面積,此塊地的面積為兩個(gè)直角三角形的面積差.

解:連接AC,

則在Rt△ADC中,
AC2=CD2+AD2=122+92=225,
∴AC=15,在△ABC中,AB2=1521,
AC2+BC2=152+362=1521,
∴AB2=AC2+BC2,
∴∠ACB=90°,
∴S△ABC-S△ACD=ACBC-ADCD=×15×20-×12×9=150-54=96(平方米),
故選A.

“點(diǎn)睛”本題考查了勾股定理和三角形面積的應(yīng)用,注意:在直角三角形中.兩直角邊的平方和等于斜邊的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知點(diǎn)C周圍200 m范圍內(nèi)為原始森林保護(hù)區(qū)MN上的點(diǎn)A處測得CA的北偏東45°方向上,A向東走600 m到達(dá)B,測得C在點(diǎn)B的北偏西60°方向上.

1MN是否穿過原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)

2若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(a23·a2-2ab+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值:當(dāng)5x2+x+2=0時(shí),求23x+2y2 -x+2y)(2y-x12x2y2-2x2y÷xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種商品,在一段時(shí)間內(nèi),該商品的銷售量y(千克)與每千克的銷售價(jià)x(元)滿足一次函數(shù)關(guān)系(如圖所示),其中30≤x≤80.

1)求y關(guān)于x的函數(shù)解析式;

2)若該種商品每千克的成本為30元,當(dāng)每千克的銷售價(jià)為多少元時(shí),獲得的利潤為600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格):

(1)畫出△ABCBC邊上的高AD;

(2)畫出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;

(3)畫一個(gè)△BCP(要求各頂點(diǎn)在格點(diǎn)上,P不與A點(diǎn)重合),使其面積等于△ABC的面積.并回答,滿足這樣條件的點(diǎn)P________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-3≤x≤0范圍內(nèi),二次函數(shù)y=ax2+bx+c(a≠0)的圖像如圖所示.在這個(gè)范圍內(nèi),下列結(jié)論:①y有最大值1,沒有最小值;②當(dāng)-3<x<-1時(shí),y隨著x的增大而增大;③方程ax2+bx+c-=0有兩個(gè)不相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)是

A. 0個(gè) B. 1個(gè)

C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn) P m + 3 m + 1 )在 x 軸上,則 P 點(diǎn)坐標(biāo)為( )

A. 0 ,﹣ 2 B. 0 ,﹣ 4 C. 4 , 0 D. 2 0

查看答案和解析>>

同步練習(xí)冊答案