【題目】小李回鄉(xiāng)創(chuàng)業(yè),銷售一種批發(fā)價為4/千克的水產(chǎn)品.根據(jù)市場調(diào)查發(fā)現(xiàn),此種水產(chǎn)品的年銷售量y(萬千克)與售價x(元/千克)之間的關(guān)系如圖所示:

1)求出銷售此種水產(chǎn)品的年銷售量y與售價x之間的函數(shù)表達(dá)式;

2)市場調(diào)查還發(fā)現(xiàn):銷售此種水產(chǎn)品需要先投入成本10萬元(不含以批發(fā)價購入這種水產(chǎn)品所需資金),如果市場管理部門規(guī)定此種水產(chǎn)品的銷售價不準(zhǔn)超過20/千克,求銷售此種水產(chǎn)品售價為多少元時,獲得的年利潤最大?最大年利潤是多少?

【答案】1y;(2)銷售此種水產(chǎn)品售價為20元時,獲得的年利潤最大,最大年利潤是70萬元

【解析】

1)當(dāng)4x≤15時,設(shè)函數(shù)解析式為ykx+b,將(417),(15,6)代入即可求出解析式,當(dāng)x15時,y5,即可得到答案;

2)設(shè)獲得的年利潤為w萬元,分兩種情況:當(dāng)4x≤15時,列得w=(x4)(﹣x+21)﹣10=﹣(x12.52+62.25,根據(jù)函數(shù)的性質(zhì)得到當(dāng)x12.5時,w有最大值為62.25萬元;當(dāng)15x≤20時,列得w=(x4×5105x30,根據(jù)一次函數(shù)的性質(zhì)得到當(dāng)x20時,w有最大值,為70萬元,兩者比較即可得到答案

解:(1)當(dāng)4x≤15時,設(shè)函數(shù)解析式為ykx+b,將(417),(15,6)代入得:

解得:,

y=﹣x+21;

當(dāng)x15時,y5

∴年銷售量y與售價x之間的函數(shù)表達(dá)式為:y.

2)設(shè)獲得的年利潤為w萬元,則由題意得:

當(dāng)4x≤15時,

w=(x4)(﹣x+21)﹣10

=﹣(x12.52+62.25,

∵二次項系數(shù)為﹣10,

∴當(dāng)x12.5時,w有最大值,為62.25萬元;

當(dāng)15x≤20時,

w=(x4×5105x30,

∴當(dāng)x20時,w有最大值,為70萬元,

7062.25,

∴銷售此種水產(chǎn)品售價為20元時,獲得的年利潤最大,最大年利潤是70萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A40),B0,),把一個直角三角尺DEF放在△OAB內(nèi),使其斜邊FD在線段AB上,三角尺可沿著線段AB上下滑動.其中∠EFD=30°,ED=2,點(diǎn)G為邊FD的中點(diǎn).

1)求直線AB的解析式;

2)如圖1,當(dāng)點(diǎn)D與點(diǎn)A重合時,求經(jīng)過點(diǎn)G的反比例函數(shù))的解析式;

3)在三角尺滑動的過程中,經(jīng)過點(diǎn)G的反比例函數(shù)的圖象能否同時經(jīng)過點(diǎn)F?如果能,求出此時反比例函數(shù)的解析式;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 拋物線軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與軸的交點(diǎn)在(0,2),(0,3)之間(包 含端點(diǎn)),則下列結(jié)論:①;②;③對于任意實(shí)數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實(shí)數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點(diǎn)AB.點(diǎn)C的坐標(biāo)是(﹣1,0),拋物線yax2+bx﹣2經(jīng)過A、C兩點(diǎn)且交y軸于點(diǎn)D.點(diǎn)Px軸上一點(diǎn),過點(diǎn)Px軸的垂線交直線AB于點(diǎn)M,交拋物線于點(diǎn)Q,連結(jié)DQ,設(shè)點(diǎn)P的橫坐標(biāo)為mm≠0).

(1)求點(diǎn)A的坐標(biāo).

(2)求拋物線的表達(dá)式.

(3)當(dāng)以B、DQ,M為頂點(diǎn)的四邊形是平行四邊形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標(biāo)系,格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))的坐標(biāo)分別是A(﹣2,2)、B(﹣31)、C(﹣1,0).

1)將ABC先向右平移2個單位長度,向下平移7個單位長度,得到DEF,畫出DEF;

2)以O為位似中心,將ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的A1B1C1,若Px,y)為ABC中的任意一點(diǎn),其對應(yīng)點(diǎn)P1的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】游泳是一項深受青少年喜愛的體育運(yùn)動,某中學(xué)為了加強(qiáng)學(xué)生的游泳安全意識組織學(xué)生觀看了紀(jì)實(shí)片孩子,請不要私自下水”,并于觀看后在本校的名學(xué)生中作了抽樣調(diào)查.制作了下面兩個不完整的統(tǒng)計圖.請根據(jù)這兩個統(tǒng)計圖回答以下問題:

(I)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

(2)補(bǔ)全兩個統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校名學(xué)生中大約有多少人結(jié)伴時會下河學(xué)游泳”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,以AC為直徑的⊙OBC于點(diǎn)D,點(diǎn)EAC延長線上一點(diǎn),且DE是⊙O的切線.

1)求證:∠CDE BAC;

2)若AB3BD,CE4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,某新建火車站站前廣場需要綠化的面積為35000,施工隊在綠化了11000后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.

1)該項綠化工程原計劃每天完成多少平方米?

2)該項綠化工程中有一塊長為20、寬為8的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖②所示),則人行通道的寬度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E為對角線AC上一點(diǎn),且AECB,連接DE并延長交BC于點(diǎn)G,過點(diǎn)AAHBE于點(diǎn)H,交BC于點(diǎn)F.以下結(jié)論:①BHHE;②∠BEG45°;③△ABF ≌△DCG 4BH2BG·CD.其中正確結(jié)論的個數(shù)是( )

A.1B.2

C.3D.4

查看答案和解析>>

同步練習(xí)冊答案