【題目】某校九年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“漢字聽寫”大賽預(yù)賽,各參賽選手的成績?nèi)缦拢▎挝唬悍郑?/span>
A班:88,91,92,93,93,93,94,98,98,100
B班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
A班 | 100 | a | 93 | 93 | c |
B班 | 99 | 95 | b | 93 | 8.4 |
(1)求表中a、b、c的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在A班,A班的成績比B班好”,但也有人說B班的成績要好,請給出兩條支持B班成績好的理由;
【答案】
(1)解:
(2)解:① 班平均分高于 班;
② 班的成績集中在中上游,故支持 班成績好 .
【解析】(1)中位數(shù)是一組數(shù)據(jù)按從小到大(或從大到。┑捻樞蛞来闻帕,處在中間位置的一個數(shù)(或最中間兩個數(shù)據(jù)的平均數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù);方差(樣本方差)是每個樣本值與全體樣本值的平均數(shù)之差的平方值的平均數(shù),在實際問題中,方差是偏離程度的大;求出a、b、c的值;(2)根據(jù)(1)中的數(shù)值得到B班平均分高于A班;B班的成績集中在中上游,故支持B班成績好 .
【考點精析】解答此題的關(guān)鍵在于理解中位數(shù)、眾數(shù)的相關(guān)知識,掌握中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角△ABC中,BC=AC,∠ACB=90°,將該三角形在直角坐標(biāo)系中放置.
(1)如圖(1),過點A作AD⊥x軸,當(dāng)B點為(0,1),C點為(3,0)時,求OD的長;
(2)如圖(2),將斜邊頂點A、B分別落在y軸上、x軸上,若A點為(0,1),B點為(4,0),求C點坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) ,當(dāng) 時對應(yīng)的函數(shù)圖像位于 軸的下方,當(dāng) 時對應(yīng)的函數(shù)圖像位于 軸的上方,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, BD是∠ABC的平分線,過點C作CE⊥BD,交 BD的延長線于點E,∠ABC=60°,∠ECD=15°.
(1)直接寫出∠ADB的度數(shù)是_______;
(2)求證:BD=AB;
(3)若AB=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點 、 、 的坐標(biāo)分別為 、 、 ,先將 沿一確定方向平移得到 ,點 的對應(yīng)點 的坐標(biāo)是 ,再將 繞原點 順時針旋轉(zhuǎn) 得到 ,點 的對應(yīng)點為點 .
(1)畫出 和 ;
(2)求出在這兩次變換過程中,點 經(jīng)過點 到達(dá) 的路徑總長;
(3)求線段 旋轉(zhuǎn)到 所掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查發(fā)現(xiàn):在一段時間內(nèi),當(dāng)銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.若商場要獲得10000元銷售利潤,該玩具銷售單價應(yīng)定為多少元?售出玩具多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,OA=4,OC=8,四邊形ABCO是平行四邊形.
(1)求點B的坐標(biāo)及四邊形ABCO的面積;
(2)若點P從點C以2單位長度/秒的速度沿CO方向移動,同時點Q從點O以1單位長度/秒的速度沿OA方向移動,設(shè)移動的時間為t秒,△AQB與△BPC的面積分別記為,,四邊形QBPO的面積是否發(fā)生變化,若不變,求出并證明你的結(jié)論,若變化,求出變化的范圍.
(3)在(2)的條件下,是否存在某個時同,使,若存在,求出t的值,若不存在,試說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:
(1)如圖1,若AB∥CD,則∠B+∠D=∠E,你能說明理由嗎?
(2)反之,若∠B+∠D=∠E,直線AB與直線CD有什么位置關(guān)系?簡要說明理由;
(3)若將點E移至圖2的位置,此時∠B、∠D、∠E之間有什么關(guān)系?直接寫出結(jié)論;
(4)若將點E移至圖3的位置,此時∠B、∠D、∠E之間有什么關(guān)系?直接寫出結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com