【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點D,交BC于點E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.
【答案】(1)見解析;(2)9
【解析】
試題分析:(1)連結(jié)AE,如圖,根據(jù)圓周角定理,由AC為⊙O的直徑得到∠AEC=90°,然后利用等腰三角形的性質(zhì)即可得到BE=CE;
(2)連結(jié)DE,如圖,證明△BED∽△BAC,然后利用相似比可計算出AB的長,從而得到AC的長.
(1)證明:連結(jié)AE,如圖,
∵AC為⊙O的直徑,
∴∠AEC=90°,
∴AE⊥BC,
而AB=AC,
∴BE=CE;
(2)連結(jié)DE,如圖,
∵BE=CE=3,
∴BC=6,
∵∠BED=∠BAC,
而∠DBE=∠CBA,
∴△BED∽△BAC,
∴=,即=,
∴BA=9,
∴AC=BA=9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC與△CDA關(guān)于點O對稱,過O任作直線EF分別交AD、BC于點E、F,下面的結(jié)論:
①點E和點F,點B和點D是關(guān)于中心O對稱點;
②直線BD必經(jīng)過點O;
③四邊形DEOC與四邊形BFOA的面積必相等;
④△AOE與△COF成中心對稱.
其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】投擲兩枚質(zhì)地均勻的骰子,骰子的六個面上分別刻有1到6的點數(shù),觀察兩枚骰子向上一面的點數(shù)情況.則下列事件為隨機事件的是( )
A.點數(shù)之和等于1B.點數(shù)之和等于9
C.點數(shù)之和大于1D.點數(shù)之和大于12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一組數(shù)據(jù)3,7,9,3,4的眾數(shù)與中位數(shù)分別是( )
A.3,9B.3,3C.3,4D.4,7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汛期的某一天,某水庫上午8時的水位是45m隨后水位以每小時0.6m的速度上漲,中午12時開始開閘泄洪,之后水位以每小時0.3m的速度下降,則當天下午6時,該水庫的水位是( )
A. 45.4m B. 45.6m C. 45.8m D. 46m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A為x軸負半軸上一點,點B為x軸正半軸上一點,OA、OB(OA<0B)的長分別是關(guān)于x的一元二次方程x2﹣4mx+m2+2=0的兩根,C(0,3),且△ABC的面積為6,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋中,放入分別標注1、﹣2、3三個不同數(shù)字的小球,小球除了數(shù)字不同外,其余都相同.小明閉上眼睛先把小球攪均,再從該布袋中摸出第一個小球,記小球上的數(shù)字為A,把球重新放回布袋中攪均,摸出第二個小球,記小球上的數(shù)字為B.
(1)求小明第一次摸出的小球上的數(shù)字為“負數(shù)”的概率;
(2)求兩次摸出的小球上的數(shù)字均是一元一次不等式2x+3>0的解的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com