【題目】如圖,左面的幾何體叫三棱柱,它有五個面,條棱,個頂點,中間和右邊的幾何體分別是四棱柱和五棱柱.
四棱柱有________個頂點,________條棱,________個面;
五棱柱有________個頂點,________條棱,________個面;
你能由此猜出,六棱柱、七棱柱各有幾個頂點,幾條棱,幾個面嗎?
棱柱有幾個頂點,幾條棱,幾個面嗎?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=3,BC=2,若AC=AD且∠ACD=60°,則對角線BD的長最大值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市用3 000元購進(jìn)某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9 000元購進(jìn)該種干果,但這次的進(jìn)價比第一次的進(jìn)價提高了20%,購進(jìn)干果數(shù)量比第一次的2倍還多300 kg.如果超市按9元/kg的價格出售,當(dāng)大部分干果售出后,余下的600 kg按售價的八折售完.
(1)該種干果第一次的進(jìn)價是多少?
(2)超市銷售這種干果共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,點A坐標(biāo)為(﹣2,0),點B坐標(biāo)為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段0B于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=﹣ x2+mx+n的圖象經(jīng)過A,C兩點.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時,求此時點E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(2 +1)倍?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,AD平分∠BAC,點E是線段BC延長線上一點,連接AE,點C在AE的垂直平分線上,若DE=10cm,則AB+BD=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,每個小方格的邊長為1個單位長度,在第二象限內(nèi)有橫、縱坐標(biāo)均為整數(shù)的A、B兩點,點B(﹣2,3),點A的橫坐標(biāo)為﹣2,且OA= .
(1)直接寫出A點的坐標(biāo),并連接AB,AO,BO;
(2)畫出△OAB關(guān)于點O成中心對稱的圖形△OA1B1 , 并寫出點A1、B1的坐標(biāo);(點A1、B1的對應(yīng)點分別為A、B)
(3)將△OAB水平向右平移4個單位長度,畫出平移后的△O1A2B2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D在邊BA或BA的延長線上,過點D作DE∥BC,交∠ABC的角平分線于點E.
(1)如圖1,當(dāng)點D在邊BA上時,點E恰好在邊AC上,求證:∠ADE=2∠DEB;
(2)如圖2,當(dāng)點D在BA的延長線上時,請直接寫出∠ADE與∠DEB之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com