下列方程的變形中,正確的是(       )

A.方程 3x﹣2=2x+1,移項,得 3x﹣2x=﹣1+2

B.方程 3﹣x=2﹣5(x﹣1),去括號,得 3﹣x=2﹣5x﹣1 C.方程 x= ,未知數(shù)系數(shù)化為 1,得 x=1          D.方程 =1 化成 5(x﹣1)﹣2x=10


D【考點】解一元一次方程.

【專題】計算題.

【分析】各項方程變形得到結(jié)果,即可做出判斷.

【解答】解:A、方程 3x﹣2=2x+1,移項得 3x﹣2x=1+2,錯誤; B、方程 3﹣x=2﹣5(x﹣1),去括號,得 3﹣x=2﹣5x+5,錯誤;

C、方程 x= ,未知數(shù)系數(shù)化為 1,得:x=,錯誤; D、方程 =1 化成 5(x﹣1)﹣2x=10,正確, 故選 D

【點評】此題考查了解一元一次方程,其步驟為:去分母,去括號,移項合并,將未知數(shù)系數(shù)化為

1,求出解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


若 y= +3,則 xy 的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


小明是個愛動腦筋的學(xué)生,在學(xué)習(xí)了解直角三角形以后,一天他去測量學(xué)校的旗桿DF的高度,此時過旗桿的頂點F的陽光剛好過身高DE1.6的小明的頭頂且在他身后形成的影長DC=2米。

(1).若旗桿的高度FG米,用含的代數(shù)式表示DG 。(4分)

(2).小明從點C后退6米在A的測得旗桿頂點F的仰角為30°,求旗桿FG的高度。(5分)

  (點A、C、D、G在一條直線上,,結(jié)果精確到0.1

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程:2x2﹣3x﹣4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在“母親節(jié)”期間,某校部分團員參加社會公益活動,準(zhǔn)備購進一批許愿瓶進行銷售,并將所得 利潤捐給慈善機構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量 y(個)與銷售單價 x(元/個) 之間的對應(yīng)關(guān)系如圖所示:

(1)試判斷 y 與 x 之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

若許愿瓶的進價為 6 元/個,按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤 w(元)與銷售單價 x(元/

個)之間的函數(shù)關(guān)系式;

(3)在的條件下,若許愿瓶的進貨成本不超過 900 元,要想獲得最大利潤,試確定這種許愿瓶的銷 售單價,并求出此時的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


關(guān)于 x 的方程 5x﹣a=0 的解比關(guān)于 y 的方程 3y+a=0 的解小 2,則 a 的值是(        )

A.    B.﹣ C.    D.﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若關(guān)于 x 的方程 mx+2=2(m﹣x)的解是,則 m=    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


單項式﹣ 的系數(shù)是     ,次數(shù)是  2          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知 a,b 為兩個連續(xù)的整數(shù),且 a<<b,則 a+b=   

查看答案和解析>>

同步練習(xí)冊答案