【題目】如圖,已知拋物線 y x2 bx c 的圖象與 x 軸交于 A1, 0 B 4, 0 兩點, 與 y 軸交于點C ,拋物線的對稱軸與 x 軸交于點 D ,點 M O 點出發(fā),以每秒 1 個單位長度的速度向 B 點運動(運動到 B 點停止),過點 M x 軸的垂線,交拋物線于點 P ,交 BC 與點Q .

1)求拋物線的解析式;

2)設(shè)當(dāng)點 M 運動了t (秒)時,四邊形OBPC 的面積為 S ,求 S t 的函數(shù)關(guān)系式,并指出自變量t 的取值范圍;

3)在線段 BC 上是否存在點Q ,使得DBQ 成為等腰三角形?若存在,求出點Q 的坐標(biāo);若不存在,說明理由.

【答案】1)拋物線的解析式為y x2 3x 4.2S2x28x80x4

3)存在,Q的坐標(biāo)為(,, 或(4,, 或(,.

【解析】

1)把A1, 0 、 B 4, 0 兩點代入解析式即可求解;

2)設(shè)點P的坐標(biāo)為Px,y),由S四邊形OBPCSOPCSOPB可列出Sx的函數(shù)關(guān)系式,由于B4,0),所以0x4;

3)有三種可能:①BQDQ,②BQBD,③DQBD,分別討論即可求得.

解:(1)把A1, 0 、 B 4, 0 兩點代入解析式得

,解得

∴拋物線的解析式為y x2 3x 4.

C點坐標(biāo)為(0,4

設(shè)BC的解析式為y=kx+b,利用B 4, 0C0,4)得到BC的解析式為y=-x+4.

2)如圖,連接OP,設(shè)點P的坐標(biāo)為Px,y

S四邊形OBPCSOPCSOPB×4×x×4×y

2x2y

2x2x23x4

2x28x8

∵點M運動到B點上停止,

0x4

S2x28x80x4

3)存在.

yx23x4x2

∴頂點的坐標(biāo)為(,),

OBOC4,

BC,∠ABC45°,

故①若BQDQ

BQDQ,BD4=

BMQM

OM4=

所以Q的坐標(biāo)為Q,

②若BQBD

∠QBM=∠CBO,∠BMQ=∠BOC=90°

∴△BQM∽△BCO,

QMBM

OM4

所以Q的坐標(biāo)為Q4,).

③若DQBD

∵∠ABC45°,

DQBD,

∴△DBQ是等腰直角三角形,

DQBD

所以Q的坐標(biāo)為Q,),

綜上所述,Q的坐標(biāo)為Q,, 或(4,, 或(,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)

(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.

(1)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm?

(2)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間PBQ的面積為12cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個安裝有進出水管的30升容器,水管單位時間內(nèi)進出的水量是一定的,設(shè)從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,得到水量y(升)與時間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信思給出下列說法,其中錯誤的是( 。

A. 每分鐘進水5

B. 每分鐘放水1.25

C. 12分鐘后只放水,不進水,還要8分鐘可以把水放完

D. 若從一開始進出水管同時打開需要24分鐘可以將容器灌滿

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y ax bx c a, b, c 是常數(shù),a 0 )與 x 軸交于A ,B 兩點,頂點P(m,n),給出下列結(jié)論:①2a+c<0;②若,,在拋物線上,則y1>y2>y3;③關(guān)于x的方程有實數(shù)解,則;④當(dāng)時,ABP為等腰直角三角形,正確的結(jié)論有( )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸交于A,B,C三點,其中C(0,3),BAC的平分線AE交y軸于點D,交BC于點E,過點D的直線l與射線AC,AB分別交于點M,N.

(1)直接寫出a的值、點A的坐標(biāo)及拋物線的對稱軸;

(2)點P為拋物線的對稱軸上一動點,若PAD為等腰三角形,求出點P的坐標(biāo);

(3)證明:當(dāng)直線l繞點D旋轉(zhuǎn)時,均為定值,并求出該定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若存在實數(shù)對坐標(biāo)(x,y)同時滿足一次函數(shù)y=px+q和反比例函數(shù)y=,則二次函數(shù)y=px2+qxk為一次函數(shù)和反比例函數(shù)的聯(lián)姻函數(shù).
(1)試判斷(需要寫出判斷過程):一次函數(shù)y=x+3和反比例函數(shù)y=是否存在聯(lián)姻函數(shù),若存在,寫出它們的聯(lián)姻函數(shù)和實數(shù)對坐標(biāo).
(2)已知:整數(shù)m,nt滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y=存在聯(lián)姻函數(shù)y=(m+t)x2+(10mt)x2015,求m的值.
(3)若同時存在兩組實數(shù)對坐標(biāo)[x1,y1][x2,y2]使一次函數(shù)y=ax+2b和反比例函數(shù)y=聯(lián)姻函數(shù),其中,實數(shù)a>b>ca+b+c=0,設(shè),求L的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的正方形ABCD中,GAD延長線上的一點,且DAG中點,動點MA點出發(fā),以每秒1個單位的速度沿看ACG的路線向G點勻速運動(M不與A,G重合),設(shè)運動時間t秒,連接BM并延長交AGN點.

1)當(dāng)t為何值時,△ABM為等腰三角形?

2)當(dāng)點NAD邊上時,若DNHN,NH交∠CDG的平分線于H,求證:BNHN;

3)過點M分別作ABAD的垂線,垂足分別為E,F,矩形AEMF與△ACG重疊部分的面積為S,請直接寫出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1A、B兩點,并與過A點的直線y=﹣x﹣1交于點C.

(1)求拋物線解析式及對稱軸;

(2)在拋物線的對稱軸上是否存在一點P,使四邊形ACPO的周長最?若存在,求出點P的坐標(biāo),若不存在,請說明理由;

(3)點My軸右側(cè)拋物線上一點,過點M作直線AC的垂線,垂足為N.問:是否存在這樣的點N,使以點M、N、C為頂點的三角形與AOC相似,若存在,求出點N的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案