【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC,BC于點D,E,點F在AC的延長線上,且∠CBF= ∠CAB.

(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

【答案】
(1)證明:連接AE,

∵AB是⊙O的直徑,

∴∠AEB=90°,

∴∠1+∠2=90°.

∵AB=AC,

∴∠1= ∠CAB.

∵∠CBF= ∠CAB,

∴∠1=∠CBF

∴∠CBF+∠2=90°

即∠ABF=90°

∵AB是⊙O的直徑,

∴直線BF是⊙O的切線


(2)解:過點C作CG⊥AB于G.

∵sin∠CBF= ,∠1=∠CBF,

∴sin∠1=

∵在Rt△AEB中,∠AEB=90°,AB=5,

∴BE=ABsin∠1= ,

∵AB=AC,∠AEB=90°,

∴BC=2BE=2

在Rt△ABE中,由勾股定理得AE= =2 ,

∴sin∠2= = = ,cos∠2= = = ,

在Rt△CBG中,可求得GC=4,GB=2,

∴AG=3,

∵GC∥BF,

∴△AGC∽△ABF,

∴BF= =


【解析】(1)出現(xiàn)直徑時,常作的輔助線為連接直徑的端點和圓上一點可構(gòu)成90度圓周角;(2)通過“過點C作CG⊥AB”可轉(zhuǎn)化∠CBF為∠1,利用其正弦,由BE=ABsin∠1,求出BC=2BE=2 ,由勾股定理和△AGC∽△ABF可求出BF.
【考點精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC.
(Ⅰ)如圖①,若∠P=20°,求∠BCO的度數(shù);
(Ⅱ)如圖②,過A作弦AD⊥OP于E,連接DC,若OE= CD,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.
(1)如圖1,若該拋物線經(jīng)過原點O,且a=﹣
①求點D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由;

(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是3個,請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

;②;③;

根據(jù)上述式子的規(guī)律,解答下列問題:

(1)第④個等式為 ;

(2)寫出第個等式,并驗證其正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店購進(jìn)一批甲、乙兩種款型時尚恤衫,甲種款型共用了7800元,乙種款型共用了6400元.甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進(jìn)價比乙種款型每件的進(jìn)價少30元.

1)甲、乙兩種款型的恤衫各購進(jìn)多少件?

2)商店進(jìn)價提高50%標(biāo)價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標(biāo)價的五折降價銷售,很快全部售完,求售完這批恤衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點為格點,以格點為頂點的三角形叫做格點三角形,根據(jù)圖形,回答下列問題.

1)圖中格點三角形A′B′C′是由格點三角形ABC通過怎樣的變換得到的?

2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-3,4),請求出三角形DEF的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華在暑假社會實踐過程中,以每千克0.5元的價格從批發(fā)市場購進(jìn)若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示,請你根據(jù)圖象提供的信息完成以下問題:

(1)求降價前銷售金額y()與售出西瓜x(千克)之間的關(guān)系式?

(2)小華從批發(fā)市場共購進(jìn)多少千克西瓜?

(3)小華這次賣瓜賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°,點E、F分別為AD、DC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AECF的長度(

A. 逐漸增加 B. 逐漸減小

C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,對角線AC和BD相交于點O,如果AC=12、BD=10、AB=m,那么m的取值范圍是(  )

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

同步練習(xí)冊答案