A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 首先證明△ABE≌△BCF,再利用角的關(guān)系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對(duì)折,得到△BPF,利用角的關(guān)系求出QF=QB,解出BP,QB,根據(jù)正弦的定義即可求解;根據(jù)AA可證△BGE與△BCF相似,進(jìn)一步得到相似比,再根據(jù)相似三角形的性質(zhì)即可求解.
解答 解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點(diǎn),
∴CF=BE,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠BCF}\\{BE=CF}\end{array}\right.$,
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,故①正確;
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF,故②正確;
根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
令PF=k(k>0),則PB=2k
在Rt△BPQ中,設(shè)QB=x,
∴x2=(x-k)2+4k2,
∴x=$\frac{5k}{2}$,
∴sin=∠BQP=$\frac{BP}{QB}$=$\frac{4}{5}$,故③正確;
∵∠BGE=∠BCF,∠GBE=∠CBF,
∴△BGE∽△BCF,
∵BE=$\frac{1}{2}$BC,BF=$\frac{\sqrt{5}}{2}$BC,
∴BE:BF=1:$\sqrt{5}$,
∴△BGE的面積:△BCF的面積=1:5,
∴S四邊形ECFG=4S△BGE,故④錯(cuò)誤.
故選:B.
點(diǎn)評(píng) 本題主要考查了四邊形的綜合題,涉及正方形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及折疊的性質(zhì)的知識(shí)點(diǎn),解決的關(guān)鍵是明確三角形翻轉(zhuǎn)后邊的大小不變,找準(zhǔn)對(duì)應(yīng)邊,角的關(guān)系求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{8}$ | B. | $\sqrt{3}$ | C. | $\sqrt{12}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
分 數(shù) 段 | 頻數(shù) | 頻率 |
60≤x<70 | 9 | a |
70≤x<80 | 36 | 0.4 |
80≤x<90 | 27 | b |
90≤x≤100 | c | 0.2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 55° | B. | 65° | C. | 75° | D. | 85° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x1=2,x2=-6 | B. | x1=-2,x2=6 | C. | x1=-2,x2=-6 | D. | x1=2,x2=6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com