【題目】如圖,二次函數(shù)y= x2+bx+c的圖象與x軸交于A(yíng)(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線(xiàn)上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
【答案】
(1)
解:∵二次函數(shù)y= x2+bx+c的圖象與x軸交于A(yíng)(3,0),B(﹣1,0),
∴ ,
解得 ,
∴y= x2﹣ x﹣4.
∴C(0,﹣4)
(2)
解:方法(1):存在.
如圖1,過(guò)點(diǎn)Q作QD⊥OA于D,此時(shí)QD∥OC,
∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),
∴AB=4,OA=3,OC=4,
∴AC= =5,
∵當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),AB=4,
∴AQ=4.
∵QD∥OC,
∴ ,
∴ ,
∴QD= ,AD= .
①作AQ的垂直平分線(xiàn),交AO于E,此時(shí)AE=EQ,即△AEQ為等腰三角形,
設(shè)AE=x,則EQ=x,DE=AD﹣AE=| ﹣x|,
∴在Rt△EDQ中,( ﹣x)2+( )2=x2,解得 x= ,
∴OA﹣AE=3﹣ =﹣ ,
∴E(﹣ ,0),
說(shuō)明點(diǎn)E在x軸的負(fù)半軸上;
②以Q為圓心,AQ長(zhǎng)半徑畫(huà)圓,交x軸于E,此時(shí)QE=QA=4,
∵ED=AD= ,
∴AE= ,
∴OA﹣AE=3﹣ =﹣ ,
∴E(﹣ ,0).
③當(dāng)AE=AQ=4時(shí),
(i).當(dāng)E在A(yíng)點(diǎn)左邊時(shí),
∵OA﹣AE=3﹣4=﹣1,
∴E(﹣1,0).
(ii).當(dāng)E在A(yíng)點(diǎn)右邊時(shí),
∵OA+AE=3+4=7,
∴E(7,0).
綜上所述,存在滿(mǎn)足條件的點(diǎn)E,點(diǎn)E的坐標(biāo)為(﹣ ,0)或(﹣ ,0)或(﹣1,0)或(7,0)
方法二:
∵點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),都已每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC運(yùn)動(dòng).過(guò)點(diǎn)Q作x軸垂線(xiàn),垂足為H.
∵A(3,0),C(0,4),
∴l(xiāng)AC:y= x﹣4,
∵點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),
∴AP=AQ=4,
∴QH= ,Qy=﹣ ,
代入LAC:y= x﹣4得,Qx= ,則Q( ,﹣ ),
∵點(diǎn)E在x軸上,
∴設(shè)E(a,0),
∵A(3,0),Q( ,﹣ ),△AEQ為等腰三角形,
∴AE=EQ,AE=AQ,EQ=AQ,
∴(a﹣3)2=(a﹣ )2+(0+ )2,∴a=﹣ ,
(a﹣3)2=(3﹣ )2+(0+ )2,∴a1=7,a2=﹣1,
(a﹣ )2+(0+ )2=(3﹣ )2+(0+ )2,∴a1=﹣ ,a2=3(舍)
∴點(diǎn)E的坐標(biāo)為(﹣ ,0)或(﹣ ,0)或(﹣1,0)或(7,0)
(3)
解:方法(1):四邊形APDQ為菱形,D點(diǎn)坐標(biāo)為(﹣ ,﹣ ).理由如下:
如圖2,D點(diǎn)關(guān)于PQ與A點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)Q作,F(xiàn)Q⊥AP于F,
∵AP=AQ=t,AP=DP,AQ=DQ,
∴AP=AQ=QD=DP,
∴四邊形AQDP為菱形,
∵FQ∥OC,
∴ ,
∴ ,
∴AF= ,F(xiàn)Q= ,
∴Q(3﹣ ,﹣ ),
∵DQ=AP=t,
∴D(3﹣ ﹣t,﹣ ),
∵D在二次函數(shù)y= x2﹣ x﹣4上,
∴﹣ = (3﹣ t)2﹣ (3﹣ t)﹣4,
∴t= ,或t=0(與A重合,舍去),
∴D(﹣ ,﹣ )
方法二:
∵P,Q運(yùn)動(dòng)到t秒,
∴設(shè)P(3﹣t,0),Q(3﹣ t,﹣ t),
∴KPQ= ,KPQ=﹣2,
∵AD⊥PQ,
∴KPQKAD=﹣1,
∴KAD= span> ,
∵A(3,0),
∴l(xiāng)AD:y= x﹣ ,
∵y= ,
∴x1=3(舍),x2=﹣ ,
∴D(﹣ ,﹣ ),
∵DY=QY,即﹣ t=﹣ ,t= ,DQ∥AP,DQ=AQ=AP,此時(shí)四邊形APDQ的形狀為菱形.
【解析】(1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y= x2+bx+c中,求得b、c,進(jìn)而可求解析式及C坐標(biāo).(2)等腰三角形有三種情況,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分線(xiàn),畫(huà)圓易得E大致位置,設(shè)邊長(zhǎng)為x,表示其他邊后利用勾股定理易得E坐標(biāo).(3)注意到P,Q運(yùn)動(dòng)速度相同,則△APQ運(yùn)動(dòng)時(shí)都為等腰三角形,又由A、D對(duì)稱(chēng),則AP=DP,AQ=DQ,易得四邊形四邊都相等,即菱形.利用菱形對(duì)邊平行且相等等性質(zhì)可用t表示D點(diǎn)坐標(biāo),又D在E函數(shù)上,所以代入即可求t,進(jìn)而D可表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°.
(1)求證:AC2=BCDC;
(2)若BC=5,DC=1,求線(xiàn)段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(0,8),(﹣3,0),點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿射線(xiàn)AO方向運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā),以1單位/秒的速度沿射線(xiàn)BO方向運(yùn)動(dòng),以PE為斜邊構(gòu)造Rt△PEC(字母按逆時(shí)針順序),且EC=2PC,拋物線(xiàn)y=﹣2x2+bx+c經(jīng)過(guò)點(diǎn)(0,4),(﹣1,﹣2),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求該拋物線(xiàn)的表達(dá)式;
(2)當(dāng)t=2時(shí),求點(diǎn)C的坐標(biāo);
(3)①當(dāng)t<3時(shí),求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
②在運(yùn)動(dòng)過(guò)程中,若點(diǎn)C恰好落在該拋物線(xiàn)上,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙中,已知格點(diǎn)△ABC和格點(diǎn)O.
(1)畫(huà)出△ABC關(guān)于點(diǎn)O對(duì)稱(chēng)的△A′B′C′;
(2)若以點(diǎn)A、O、C、D為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為__.(寫(xiě)出所有可能的結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圓⊙O交BC于E點(diǎn),連接DE并延長(zhǎng),交AC于P點(diǎn),交AB延長(zhǎng)線(xiàn)于F.
(1)求證:CF=DB;
(2)當(dāng)AD= 時(shí),試求E點(diǎn)到CF的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為1cm的等邊三角形ABC沿直線(xiàn)l向右翻動(dòng)(不滑動(dòng)),點(diǎn)B從開(kāi)始到結(jié)束,所經(jīng)過(guò)路徑的長(zhǎng)度為( )
A. cm
B.(2+ π)cm
C. cm
D.3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y= x與雙曲線(xiàn)y= (k>0)交于A(yíng)、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣4,﹣2),C為雙曲線(xiàn)y= (k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線(xiàn)AB上的一點(diǎn),OC為任一射線(xiàn),OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD的補(bǔ)角和∠BOE的補(bǔ)角;
(2)若∠BOC=68°,求∠COD和∠EOC的度數(shù);
(3)∠COD與∠EOC具有怎樣的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲(chóng)在55的方格(每一格邊長(zhǎng)為1)上沿著網(wǎng)格線(xiàn)運(yùn)動(dòng),從A處出發(fā)去看望B、C、D處的甲蟲(chóng),規(guī)定:向上向右為正,向下向左為負(fù).例如:從A到B記為:(+1,+3);從C到D 記為:(+1,-2),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)填空:記為( , ), 記為( , );
(2)若甲蟲(chóng)的行走路線(xiàn)為:,請(qǐng)你計(jì)算甲蟲(chóng)走過(guò)的路程.
(3)若這只甲蟲(chóng)去Q的行走路線(xiàn)依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請(qǐng)依次在圖2標(biāo)出點(diǎn)M、N、P、Q的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com