【題目】如圖1,直角坐標(biāo)系中有一矩形OABC , 其中 O是坐標(biāo)原點(diǎn),點(diǎn)A , C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(3,4),直線 AB于點(diǎn)D , 點(diǎn)P是直線 位于第一象限上的一點(diǎn),連接PA , 以PA為半徑作⊙P ,

(1)連接AC , 當(dāng)點(diǎn)P落在AC上時(shí), 求PA的長(zhǎng);
(2)當(dāng)⊙P經(jīng)過(guò)點(diǎn)O時(shí),求證:△PAD是等腰三角形;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m
在點(diǎn)P移動(dòng)的過(guò)程中,當(dāng)⊙P與矩形OABC某一邊的交點(diǎn)恰為該邊的中點(diǎn)時(shí),求所有滿足要求的m值;

【答案】
(1)

通過(guò)已知條件可知A(3,0),C(0,4),設(shè)AC所在直線解析式為y=kx+b,將A,B兩點(diǎn)代入可得解析式為y=x+4,與y=x聯(lián)立方程可以得到點(diǎn)P坐標(biāo)為(,)根據(jù)勾股定理可以求得PA=.


(2)

證明:由已知條件可以得出D點(diǎn)坐標(biāo)為(3,)當(dāng)圓經(jīng)過(guò)原點(diǎn)時(shí)可以知道點(diǎn)P坐標(biāo)為()所以可以知道點(diǎn)p在線段CD的垂直平分線上,即三角形PAD是等腰直角三角形。


(3)

解:

①分4種情形討論

。┙稽c(diǎn)M是OC中點(diǎn),PM=PA

則m與2-m的平方和等于m與3-m的平方和,可以得到m=

ⅱ)交點(diǎn)M是OA中點(diǎn),PM=PA

∴MG=GA= ∴m=

ⅲ)交點(diǎn)M是AB中點(diǎn),PM=PA

∴PG=AM=1 ∴PH=1 ∴m=2

ⅳ)交點(diǎn)M是BC中點(diǎn),PM=PA

則m-m-4的平方和等于m-3與m的平方和,則m=


【解析】本題重點(diǎn)考察二次函數(shù)和一次函數(shù)的坐標(biāo)問(wèn)題,同時(shí)結(jié)合矩形的特征來(lái)解決相關(guān)問(wèn)題。運(yùn)用勾股定理解決相關(guān)問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0) (Ⅰ)當(dāng)a=2時(shí),求不等式f(x)>3的解集;
(Ⅱ)證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Acos2x+φ)+1(A>0,>0,0<φ< )的最大值為3,f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對(duì)稱軸間的距離為2,則f(1)+f(2)+f(3)+…+f(2016)的值為(
A.2468
B.3501
C.4032
D.5739

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足
(1)求△ABC的面積;
(2)若tanB=2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等邊三角形,過(guò)點(diǎn)BBDAC于點(diǎn)D , 過(guò)DDEBC , 且DE=CD , 連接CE ,

(1)求證:△CDE為等邊三角形;
(2)請(qǐng)連接BE , 若AB=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的正方形網(wǎng)格中,點(diǎn)O在格點(diǎn)上,⊙O的半徑與小正方形的邊長(zhǎng)相等,請(qǐng)利用無(wú)刻度的直尺完成作圖,在圖(1)中畫出一個(gè)45°的圓周角,在圖(2)中畫出一個(gè)22.5°的圓周角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與的圖像交于點(diǎn),與軸和 軸分別交于點(diǎn)和點(diǎn),且點(diǎn)的橫坐標(biāo)為.

(1)的值與的長(zhǎng);

(2)若點(diǎn)為線段上一點(diǎn),且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接河南省第30屆青少年科技創(chuàng)新大賽,某中學(xué)向七年級(jí)學(xué)生征集科幻畫作品,李老師從七年級(jí)12個(gè)班中隨機(jī)抽取了A、B、C、D四個(gè)班,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖(如圖)

(1)李老師所調(diào)查的4個(gè)班征集到作品共件,其中B班征集到作品 , 請(qǐng)把圖補(bǔ)充完整;
(2)李老師所調(diào)查的四個(gè)班平均每個(gè)班征集到作品多少件?請(qǐng)估計(jì)全年級(jí)共征集到作品多少件?
(3)如果全年級(jí)參展作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生.現(xiàn)在要抽兩人去參加學(xué)校總結(jié)表彰座談會(huì),用樹(shù)狀圖或列表法求出恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)D是上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.

(1)求證:BC是⊙O的切線。
(2)若BD平分∠ABE,求證:DE2=DFDB。
(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑。

查看答案和解析>>

同步練習(xí)冊(cè)答案