(2012•響水縣一模)在△ABC中,AB、BC、AC三邊的長分別為、,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:______;
(2)若△DEF三邊的長分別為、、,請?jiān)趫D1的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積;
(3)如圖2,一個(gè)六邊形的花壇被分割成7個(gè)部分,其中正方形PRBA,RQDC,QPFE的面積分別為13,10,17,且△PQR、△BCR、△DEQ、△AFP的面積相等,求六邊形花壇ABCDEF的面積.

【答案】分析:(1)畫出格子后可以根據(jù)格子的面積很容易的算出三角形的面積,大矩形的面積減去矩形內(nèi)除去所求三角形的面積即可.
(2)構(gòu)造時(shí)取(1,3)(2,2)(1,4)即可.
(3)根據(jù)PRQ的長度。1,3)(1,4)(2,3)在網(wǎng)格中畫圖,求出其面積.
解答:解:(1)根據(jù)格子的數(shù)可以知道面積為S=3×3-=;

(2)畫圖為
計(jì)算出正確結(jié)果S△DEF=3;

(3)利用構(gòu)圖法計(jì)算出S△PQR=
△PQR、△BCR、△DEQ、△AFP的面積相等
計(jì)算出六邊形花壇ABCDEF的面積為S正方形PRBA+S正方形RQDC+S正方形QPFE+4S△PQR=13+10+17+4×=62.
點(diǎn)評(píng):本題是一種簡單的求解三角形面積的算法,可以求出任意三角形的面積,方便省時(shí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•響水縣一模)在下列函數(shù)中,y隨x的增大而增大的函數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•響水縣一模)在某賽季NBA比賽中,姚明最后六場的得分情況如下:17、15、21、28、12、15(單位:分),極差是
16
16
(分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•響水縣一模)已知扇形的半徑為3cm,面積為3πcm2,扇形的弧長是
cm(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•響水縣一模)動(dòng)手操作:在矩形紙片ABCD中,AB=3,AD=5,如圖所示,折疊紙片,使點(diǎn)A落在BC邊上的A1處,折痕為PQ.當(dāng)A1點(diǎn)在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在AB、AD邊上移動(dòng),則點(diǎn)A1在BC邊上距B點(diǎn)可移動(dòng)的最短距離為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•響水縣一模)計(jì)算:
(1)計(jì)算:(-2)2+2
12
-8cos30°
        
(2)解方程組:
3x+4y=2…①
x-2y=4…②

查看答案和解析>>

同步練習(xí)冊答案