(2012•響水縣一模)已知扇形的半徑為3cm,面積為3πcm2,扇形的弧長(zhǎng)是
cm(結(jié)果保留π)
分析:將已知的半徑及面積代入扇形的面積公式S=
1
2
rl(r為扇形半徑,l為扇形的弧長(zhǎng))中計(jì)算,即可得到扇形的弧長(zhǎng).
解答:解:∵r=3cm,S=3πcm2,且S=
1
2
rl,
∴l(xiāng)=
2S
r
=
3
=2πcm.
故答案為:2π
點(diǎn)評(píng):此題考查了扇形的面積公式,扇形的面積有兩種計(jì)算方法:S=
nπr
360
,S=
1
2
rl(n為扇形圓心角的度數(shù),r為扇形的半徑,l為扇形的弧長(zhǎng)).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•響水縣一模)在下列函數(shù)中,y隨x的增大而增大的函數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•響水縣一模)在某賽季NBA比賽中,姚明最后六場(chǎng)的得分情況如下:17、15、21、28、12、15(單位:分),極差是
16
16
(分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•響水縣一模)動(dòng)手操作:在矩形紙片ABCD中,AB=3,AD=5,如圖所示,折疊紙片,使點(diǎn)A落在BC邊上的A1處,折痕為PQ.當(dāng)A1點(diǎn)在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在AB、AD邊上移動(dòng),則點(diǎn)A1在BC邊上距B點(diǎn)可移動(dòng)的最短距離為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•響水縣一模)計(jì)算:
(1)計(jì)算:(-2)2+2
12
-8cos30°
        
(2)解方程組:
3x+4y=2…①
x-2y=4…②

查看答案和解析>>

同步練習(xí)冊(cè)答案