小明同學(xué)將直角三角板直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線分別相交于A、B兩點(diǎn).小明發(fā)現(xiàn)交點(diǎn)A、B兩點(diǎn)的連線總經(jīng)過一個(gè)固定點(diǎn),則該點(diǎn)坐標(biāo)為 .
(0,-2).
解析試題分析:設(shè)A(-m,-m2)(m>0),B(n,-n2)(n>0),表示出直線AB解析式中b=-mn,再利用勾股定理得出mn=4,進(jìn)而得出直線AB恒過其與y軸的交點(diǎn)C(0,-2).
設(shè)A(-m,-m2)(m>0),B(n,-n2)(n>0),
設(shè)直線AB的解析式為:y=kx+b,則
①×n+②×m得,(m+n)b=-(m2n+mn2)=-mn(m+n),
∴b=-mn,
由前可知,OB2=n2+n4,OA2=m2+m4,AB2=(n+m)2+(-m2+n2)2,
由AB2=OA2+OB2,得:n2+n4+m2+m4=(n+m)2+(-m2+n2)2,
化簡(jiǎn),得mn=4.
∴b=-×4=-2.由此可知不論k為何值,直線AB恒過點(diǎn)(0,-2),
考點(diǎn):二次函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:單選題
對(duì)于拋物線,下列結(jié)論:①拋物線的開口向下;②對(duì)稱軸為直線x=1;③頂點(diǎn)坐標(biāo)為(-1,3);④x>1時(shí),y隨x的增大而減小,其中正確結(jié)論的個(gè)數(shù)為
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點(diǎn)O,A1,將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,C2與x 軸交于另一點(diǎn)A2.請(qǐng)繼續(xù)操作并探究:將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,與x 軸交于另一點(diǎn)A3;將C3繞點(diǎn)A2旋轉(zhuǎn)180°得C4,與x 軸交于另一點(diǎn)A4,這樣依次得到x軸上的點(diǎn)A1,A2,A3,…,An,…,及拋物線C1,C2,…,Cn,….則點(diǎn)A4的坐標(biāo)為 ;Cn的頂點(diǎn)坐標(biāo)為 (n為正整數(shù),用含n的代數(shù)式表示) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
將拋物線y=x2+1先向左平移2個(gè)單位,再向下平移3個(gè)單位,那么所得拋物線的函數(shù)關(guān)系式是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
設(shè)拋物線過A(0,2),B(4,3),C三點(diǎn),其中點(diǎn)C在直線上,且點(diǎn)C到拋物線對(duì)稱軸的距離等于1,則拋物線的函數(shù)解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,有一個(gè)拋物線形拱橋,其橋拱的最大高度為16米,跨度為40米,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中,則此拋物線的函數(shù)關(guān)系式為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,二次函數(shù)(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為x=1,點(diǎn)B坐標(biāo)為(﹣1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<-1或x>2.其中正確的個(gè)數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com