【題目】已知拋物線與軸交于點(diǎn),,與軸交于點(diǎn).是直線上的一個動點(diǎn),直線與拋物線交于另一點(diǎn).
(1)求這個拋物線的解析式;
(2)如圖,當(dāng)點(diǎn)在線段上時,連接,若,求點(diǎn)的坐標(biāo);
(3)若,請直接寫出點(diǎn)的橫坐標(biāo).
【答案】(1);(2);(3)點(diǎn)的橫坐標(biāo)為1,2,,.
【解析】
(1)將,代入求;(2)作,垂足為,分別過,作軸的垂線和平行線,兩線交于點(diǎn),得出,再根據(jù),設(shè)坐標(biāo)建立等量關(guān)系求出點(diǎn)坐標(biāo),再求出直線的函數(shù)解析式,聯(lián)立解方程求出點(diǎn)坐標(biāo);(3)分類討論,利用相似三角形的模型求解.
(1)將,代入
得: 解得
∴二次函數(shù)的解析式為:;
(2)
作,垂足為,分別過,作軸的垂線和平行線,兩線交于點(diǎn).
∵,∴.
易證,∴.設(shè)為,則,,
.
∴,解得,∴點(diǎn).
由,可求得直線為:;
由,可求得直線為:;
二者聯(lián)立方程組,
解得點(diǎn)的坐標(biāo)為;
(3)直線的解析式為:且.設(shè)如圖:
①當(dāng)在的左側(cè)時:作于,于
∴ ,
∴
∴ 代入
解得:
∴ 將代入則的橫坐標(biāo)為1或2;
②當(dāng)在的右側(cè)時,
∴是的中點(diǎn),設(shè),
∴中點(diǎn) 代入
解得:
將代入則的橫坐標(biāo)為 或
綜上所述:點(diǎn)的橫坐標(biāo)為1,2,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知將反比例函數(shù)(x<0),沿y軸翻折得到反比例函數(shù)(x>0),一次函數(shù)y=ax+b與交于A(1,m),B(4,n)兩點(diǎn);
(1)求反比例函數(shù)y2和一次函數(shù)y=ax+b的解析式;
(2)連接OA,過B作BC⊥x軸,垂足為C,點(diǎn)P是線段AB上一點(diǎn),若直線OP將四邊形OABC的面積分成1:2兩部分,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9m的B處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是圓上一點(diǎn),弦于點(diǎn),且.過點(diǎn)作的切線,過點(diǎn)作的平行線,兩直線交于點(diǎn),的延長線交的延長線于點(diǎn).
(1)求證:與相切;
(2)連接,若的半徑為4,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地如圖,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)圖象;折線BCD表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)圖象;請根據(jù)圖象解答下到問題:
(1)貨車離甲地距離y(干米)與時間x(小時)之間的函數(shù)式為 ;
(2)當(dāng)轎車與貨車相遇時,求此時x的值;
(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將□ABCD的邊AB延長至點(diǎn)E,使AB=BE,連接BD,DE,EC,DE交BC于點(diǎn)O.
(1)求證:△ABD≌△BEC;
(2)若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎電動車、乙騎摩托車都從M地出發(fā),沿一條筆直的公路勻速前往N地,甲先出發(fā)一段時間后乙再出發(fā).甲,乙兩人到達(dá)N地后均停止騎行,已知M,N兩地相距km,設(shè)甲行駛的時間為x(h),甲、乙兩人之同的距離為y(km),表示y與x函數(shù)關(guān)系的圖象如圖所示.請你解決以下問題:
(1)求線段BC所在直線的函數(shù)表達(dá)式;
(2)分別求甲,乙的速度;
(3)填空:點(diǎn)A的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動點(diǎn)M從A點(diǎn)以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時△COM≌△AOB,請直接寫出此時t值和M點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com