【題目】如圖,點C,D在AB同側(cè),∠CAB=∠DBA,下列條件中不能判定△ABD≌△BAC的是( 。
A. ∠D=∠C B. BD=AC C. ∠CAD=∠DBC D. AD=BC
【答案】D
【解析】A、添加條件∠D=∠C,還有已知條件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本選項不符合題意;
B、添加條件BD=AC,還有已知條件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本選項不符合題意;
C、∵∠CAB=∠DBA,∠CAD=∠DBC,
∴∠DAB=∠CBA,
還有已知條件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本選項不符合題意;
D、添加條件∠D=∠C,還有已知條件∠CAB=∠DBA,BC=BC,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故本選項符合題意,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】已知:三角形ABC中,∠A=90,AB=AC,D為BC的中點,如圖,E,F分別是AB,AC上的點,且BE=AF,求證:△DEF為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E .
(1)求直線BC的解析式;
(2)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某公司(A點)與公路(直線L)的距離為300米,又與公路車站(D點)的距離為500米,現(xiàn)要在公路邊建一個物流站(C點),使之與該公司A及車站D的距離相等,求物流站與車站之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】車庫的電動門欄桿如圖所示,BA垂直于地面AE于A,CD平行于地面AE,則∠ABC+∠BCD的大小是( )
A.150°
B.180°
C.270°
D.360°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com