【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線于點(diǎn)F,若SDEC=9,則SBCF=(
A.6
B.8
C.10
D.12

【答案】D
【解析】解:∵四邊形ABCD是平行四邊形, ∴AD∥BC,AD=BC,
∴△DEF∽△BCF,
, =( 2 ,
∵E是邊AD的中點(diǎn),
∴DE= AD= BC,
= ,
∴△DEF的面積= SDEC=3,
∴SBCF=12;
故選D.
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于點(diǎn)O,點(diǎn)P、D分別在AO和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.

(1)理清思路完成解答
本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識(shí)遷移,探索新知
若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿足題中條件的點(diǎn)D也隨之在直線BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫(xiě)出CD′與AP′的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是(
A.70°
B.65°
C.60°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖象與邊長(zhǎng)為5的等邊△AOB的邊OA,AB分別相交于C,D兩點(diǎn),若OC=2BD,則實(shí)數(shù)k的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ab,且ab之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3,AB.試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MNaAM+MN+NB的長(zhǎng)度和最短,則此時(shí)AM+NB=(  )

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(6,6),B(8,2),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮小為原來(lái)的 后得到線段CD,則點(diǎn)B的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為(
A.(3,3)
B.(1,4)
C.(3,1)
D.(4,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=120°,AD,BE分別為△ABC的角平分線,連結(jié)DE.

(1)求證:點(diǎn)EDA,DC的距離相等;

(2)求∠DEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角坐標(biāo)系中有一矩形OABC,其中O是坐標(biāo)原點(diǎn),點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(3,4),直線y= x交AB于點(diǎn)D,點(diǎn)P是直線y= x位于第一象限上的一點(diǎn),連接PA,以PA為半徑作⊙P,
(1)連接AC,當(dāng)點(diǎn)P落在AC上時(shí),求PA的長(zhǎng);
(2)當(dāng)⊙P經(jīng)過(guò)點(diǎn)O時(shí),求證:△PAD是等腰三角形;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m, ①在點(diǎn)P移動(dòng)的過(guò)程中,當(dāng)⊙P與矩形OABC某一邊的交點(diǎn)恰為該邊的中點(diǎn)時(shí),求所有滿足要求的m值;
②如圖2,記⊙P與直線y= x的兩個(gè)交點(diǎn)分別為E,F(xiàn)(點(diǎn)E在點(diǎn)P左下方),當(dāng)DE,DF滿足 <3時(shí),求m的取值范圍.(請(qǐng)直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以O(shè)為圓心的兩個(gè)同心圓中,AB經(jīng)過(guò)圓心O,且與小圓相交于點(diǎn)A,與大圓相交于點(diǎn)B.小圓的切線AC與大圓相交于點(diǎn)D,且CO平分∠ACB.
(1)試判斷BC所在直線與小圓的位置關(guān)系,并說(shuō)明理由;
(2)試判斷線段AC、AD、BC之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)若AB=8,BC=10,求大圓與小圓圍成的圓環(huán)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案