【題目】已知點(diǎn)A,B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C,D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A,B,C,D各點(diǎn)依次排列)為正方形時(shí),我們稱這個(gè)正方形為此函數(shù)圖象的“伴侶正方形”.
例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)“伴侶正方形”.
(1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“伴侶正方形”的邊長(zhǎng);
(2)如圖2,若某函數(shù)是反比例函數(shù) (k>0),它的圖象的“伴侶正方形”為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
(3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C,D中的一個(gè)點(diǎn)坐標(biāo)為(3,4),請(qǐng)你直接寫出該二次函數(shù)的解析式.
【答案】
(1)解:(I)當(dāng)點(diǎn)A在x軸正半軸、點(diǎn)B在y軸負(fù)半軸上時(shí):
正方形ABCD的邊長(zhǎng)為 .
(II)當(dāng)點(diǎn)A在x軸負(fù)半軸、點(diǎn)B在y軸正半軸上時(shí):
設(shè)正方形邊長(zhǎng)為a,易得3a= ,
解得a= ,此時(shí)正方形的邊長(zhǎng)為 .
∴所求“伴侶正方形”的邊長(zhǎng)為 或
(2)解:如圖,作DE⊥x軸,CF⊥y軸,垂足分別為點(diǎn)E、F,
易證△ADE≌△BAO≌△CBF.
∵點(diǎn)D的坐標(biāo)為(2,m),m<2,
∴DE=OA=BF=m,
∴OB=AE=CF=2﹣m.
∴OF=BF+OB=2,
∴點(diǎn)C的坐標(biāo)為(2﹣m,2).
∴2m=2(2﹣m),解得m=1.
∴反比例函數(shù)的解析式為y=
(3)解:實(shí)際情況是拋物線開口向上的兩種情況中,另一個(gè)點(diǎn)都在(3,4)的左側(cè),而開口向下時(shí),另一點(diǎn)都在(3,4)的右側(cè),與上述解析明顯不符合
a、當(dāng)點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí):另外一個(gè)頂點(diǎn)為(4,1),對(duì)應(yīng)的函數(shù)解析式是y=﹣ x2+ ;
b、當(dāng)點(diǎn)A在x 軸正半軸上,點(diǎn) B在 y軸正半軸上,點(diǎn)D 坐標(biāo)為(3,4)時(shí):不存在,
c、當(dāng)點(diǎn)A 在 x 軸正半軸上,點(diǎn) B在 y軸負(fù)半軸上,點(diǎn)C 坐標(biāo)為(3,4)時(shí):不存在
d、當(dāng)點(diǎn)A在x 軸正半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)D坐標(biāo)為(3,4)時(shí):另外一個(gè)頂點(diǎn)C為(﹣1,3),對(duì)應(yīng)的函數(shù)的解析式是y= x2+ ;
e、當(dāng)點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí),另一個(gè)頂點(diǎn)D的坐標(biāo)是(7,﹣3)時(shí),對(duì)應(yīng)的函數(shù)解析式是y=﹣ x2+ ;
f、當(dāng)點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸負(fù)半軸上,點(diǎn)C坐標(biāo)為(3,4)時(shí),另一個(gè)頂點(diǎn)D的坐標(biāo)是(﹣4,7)時(shí),對(duì)應(yīng)的拋物線為y= x2+ ;
故二次函數(shù)的解析式分別為:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+
【解析】(1)先正確地畫出圖形,再利用正方形的性質(zhì)確定相關(guān)點(diǎn)的坐標(biāo)從而計(jì)算正方形的邊長(zhǎng).
(2)因?yàn)锳BCD為正方形,所以可作垂線得到等腰直角三角形,利用點(diǎn)D(2,m)的坐標(biāo)表示出點(diǎn)C的坐標(biāo),可求出m的值 ,即可得到反比例函數(shù)的解析式.
(3)由拋物線開口既可能向上,也可能向下.當(dāng)拋物線開口向上時(shí),正方形的另一個(gè)頂點(diǎn)也是在拋物線上,這個(gè)點(diǎn)既可能在點(diǎn)(3,4)的左邊,也可能在點(diǎn)(3,4)的右邊,過點(diǎn)(3,4)向x軸作垂線,利用全等三角形確定線段的長(zhǎng)即可確定拋物線上另一個(gè)點(diǎn)的坐標(biāo);當(dāng)拋物線開口向下時(shí)也是一樣地分為兩種情況來討論,即可得到所求的結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形.有兩條對(duì)稱軸:直線y=x和 y=-x.對(duì)稱中心是:原點(diǎn);性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中∠BAC=135°,點(diǎn)E,點(diǎn)F在BC上,EM垂直平分AB交AB于點(diǎn)M,FN垂直平分AC交AC于點(diǎn)N,BE=12,CF=9.
(1)判斷△EAF的形狀,并說明理由;
(2)求△EAF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=60°,∠AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO、射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為lcm/s;P、Q同時(shí)出發(fā),同時(shí)射線OC繞著點(diǎn)O從OA上以每秒5°的速度順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間是t(s).
(1)當(dāng)點(diǎn)P在MO上運(yùn)動(dòng)時(shí),PO=______cm(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P在線段MO上運(yùn)動(dòng)時(shí),t為何值時(shí),OP=OQ?此時(shí)射線OC是∠AOB的角平分線嗎?如果是請(qǐng)說明理由.
(3)在射線OB上是否存在P、Q相距2cm?若存在,請(qǐng)求出t的值并求出此時(shí)∠BOC的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.
(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.方法1:______;方法2:_______.
(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系._______;
(3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)使長(zhǎng)方形面積為:3a2+7ab+2b2,并對(duì)3a2+7ab+2b2因式分解為_______.
(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,E為AB的中點(diǎn),連接CE,BD,過點(diǎn)E作FE⊥CE于點(diǎn)E,交AD于點(diǎn)F,連接CF,已知2AD=AB=BC.
(1)求證:CE=BD;
(2)若AB=4,求AF的長(zhǎng)度;
(3)求sin∠EFC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC沿著點(diǎn)A到點(diǎn)D的方向平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).
(1)畫出△ABC中AB邊上的高CH;(提醒:別忘了標(biāo)注字母);
(2)請(qǐng)畫出平移后的△DEF;
(3)平移后,線段AB掃過的部分所組成的封閉圖形的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對(duì)甲、乙、丙三名候選人進(jìn)行了三項(xiàng)素質(zhì)測(cè)試.各項(xiàng)測(cè)試成績(jī)?nèi)绫砀袼荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī) | ||
甲 | 乙 | 丙 | |
專業(yè)知識(shí) | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質(zhì) | 87 | 43 | 50 |
(1)如果根據(jù)三次測(cè)試的平均成績(jī)確定人選,那么誰將被錄用?
(2)根據(jù)實(shí)際需要,公司將專業(yè)知識(shí)、語言能力和綜合素質(zhì)三項(xiàng)測(cè)試得分按4:3:1的比例確定每個(gè)人的測(cè)試總成績(jī),此時(shí)誰將被錄用?
(3)請(qǐng)重新設(shè)計(jì)專業(yè)知識(shí)、語言能力和綜合素質(zhì)三項(xiàng)測(cè)試得分的比例來確定每個(gè)人的測(cè)試總成績(jī),使得乙被錄用,若重新設(shè)計(jì)的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數(shù)值即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件.其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元
(1)如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件?
(2)如果購買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購買方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com