【題目】已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,現(xiàn)將沿直線AB翻折得到,以點(diǎn)A、B、C為頂點(diǎn)作平行四邊形,第四個頂點(diǎn)D的坐標(biāo)是______.
【答案】,,
【解析】
連接OC交AB于點(diǎn)D,根據(jù)對稱軸是對應(yīng)點(diǎn)連線的垂直平分線得出,,利用面積求出OD,過C點(diǎn)作軸于H點(diǎn),在直角中,利用三角函數(shù)求得CH和OH,則C的坐標(biāo)即可求得再根據(jù)平行四邊形的性質(zhì)求出第四個頂點(diǎn)D的坐標(biāo).
解:如圖,連接OC交AB于點(diǎn)D,
將沿直線AB翻折得到,
,.
直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
,,
.
,
,
.
過C點(diǎn)作軸于H點(diǎn).
,
,
,
在直角中,,
,
以點(diǎn)A、B、C為頂點(diǎn)作平行四邊形時,分三種情況:
以AC為對角線時,;
以BC為對角線時,;
以AB為對角線時,
故答案為,,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營救受困群眾,途經(jīng)地時,由所攜帶的救生艇將地受困群眾運(yùn)回地,沖鋒舟繼續(xù)前進(jìn),到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數(shù)圖象如圖所示.假設(shè)營救群眾的時間忽略不計,水流速度和沖鋒舟在靜水中的速度不變.
(1)請直接寫出沖鋒舟從地到地所用的時間.
(2)求水流的速度.
(3)沖鋒舟將地群眾安全送到地后,又立即去接應(yīng)救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數(shù)關(guān)系式為,假設(shè)群眾上下船的時間不計,求沖鋒舟在距離地多遠(yuǎn)處與救生艇第二次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵居民節(jié)約用電,電力公司規(guī)定如下電費(fèi)計算方法:每月用電不超過100度,按每度0.6元計費(fèi);每月用電超過100度,超過部分按每度1元計費(fèi).
(1)若某用戶某年1月交電費(fèi)88元,那么該用戶1月份用電多少度?
(2)若某用戶某年2月份平均每度電費(fèi)0.75元,那么該用戶2月份用電多少度?應(yīng)交電費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線l1與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,l1的解析式為y= x2﹣2,若將拋物線l1平移,使平移后的拋物線l2經(jīng)過點(diǎn)A,對稱軸為直線x=﹣6,拋物線l2與x軸的另一個交點(diǎn)是E,頂點(diǎn)是D,連結(jié)OD,AD,ED.
(1)求拋物線l2的解析式;
(2)求證:△ADE∽△DOE;
(3)半徑為1的⊙P的圓心P沿著直線x=﹣6從點(diǎn)D運(yùn)動到F(﹣6,0),運(yùn)動速度為1單位/秒,運(yùn)動時間為t秒,⊙P繞著點(diǎn)C順時針旋轉(zhuǎn)90°得⊙P1 , 隨著⊙P的運(yùn)動,求P1的運(yùn)動路徑長以及當(dāng)⊙P1與y軸相切的時候t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某條道路上通行車輛限速為60千米/時,在離道路50米的點(diǎn)P處建一個監(jiān)測點(diǎn),道路AB段為檢測區(qū)(如圖).在△ABP中,已知∠PAB=30°,∠PBA=45°,一輛轎車通過AB段的時間8.1秒,請判斷該車是否超速?(參考數(shù)據(jù): ≈1.41, ≈1.73,60千米/時= 米/秒)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+b與x軸交于點(diǎn)A、B,且A點(diǎn)的坐標(biāo)為(1,0),與y軸交于點(diǎn)C(0,1).
(1)求拋物線的解析式,并求出點(diǎn)B坐標(biāo);
(2)過點(diǎn)B作BD∥CA交拋物線于點(diǎn)D,連接BC、CA、AD,求四邊形ABCD的周長;(結(jié)果保留根號)
(3)在x軸上方的拋物線上是否存在點(diǎn)P,過點(diǎn)P作PE垂直于x軸,垂足為點(diǎn)E,使以B、P、E為頂點(diǎn)的三角形與△CBD相似?若存在請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB>AC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)F在BC邊上,連接DE、DF、EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等( )
A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a、c滿足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù)______表示的點(diǎn)重合;
(3)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動,若點(diǎn)A以每秒1個單位長度的速度向左運(yùn)動,同時,點(diǎn)B和點(diǎn)C分別以每秒2個單位長度和4個單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數(shù)式表示).
(4)直接寫出點(diǎn)B為AC中點(diǎn)時的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,紙片ABCD中,AD=5,,過點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下,將它平移至的位置,拼成四邊形,則四邊形的形狀為(_____)
A.平行四邊形 B.菱形 C.矩形 D.正方形
(2)如圖2,在(1)中的四邊形中,在EF上取一點(diǎn)P,EP=4,剪下,將它平移至的位置,拼成四邊形。①求證:四邊形是菱形;②求四邊形的兩條對角線的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com