【題目】下圖中,是木桿和旗桿豎在操場上,其中木桿在陽光下的影子已畫出.

(1)用線段表示這一時刻旗桿在陽光下的影子.

(2)比較旗桿與木桿影子的長短.

(3)圖中是否出現(xiàn)了相似三角形?

(4)為了出現(xiàn)這樣的相似三角形,木桿不可以放在圖中的哪些位置?

【答案】(1)線段MN即是影長,

(2)旗桿的影子長;

(3)有相似三角形,分別由旗桿及其影子和木桿及其影子以及太陽光線構成;

(4)木桿不可以立在旗桿C影子上.

【解析】

試題分別作出平行于光線的線,即可得到平行投影,然后根據(jù)圖形可回答下面的提問.

(1)線段MN即是影長,

(2)旗桿的影子長;

(3)有相似三角形,分別由旗桿及其影子和木桿及其影子以及太陽光線構成;

(4)木桿不可以立在旗桿C影子上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F分別是 四邊形ABCD的邊AB、CD上的點,AF與DE相交于點P,BF與CE相交于點Q,記S1=S△APD,S2=S△BQC,四邊形EQFP的面積為S.

(1)若四邊形ABCD為平行四邊形,如圖1,求證:S=S1+S2;

(2)若四邊形ABCD為一般凸多邊形,AB∥CD,如圖2,求證:S=S1+S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=4,動點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動.過點PPDAC于點D(點P不與點A、B重合),作∠DPQ=60°,邊PQ交射線DC于點Q.設點P的運動時間為t秒.

(1)用含t的代數(shù)式表示線段DC的長;

(2)當點Q與點C重合時,求t的值;

(3)設△PDQ與△ABC重疊部分圖形的面積為S,求St之間的函數(shù)關系式;

(4)當線段PQ的垂直平分線經過△ABC一邊中點時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(7分)小敏同學測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達點F處測得樓頂C的仰角為45°(BFD在同一直線上).已知小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù):,.結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在開展學雷鋒社會實踐活動中,某校為了解全校1200名學生參加活動的情況,隨機調查了50名學生每人參加活動的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計圖如下:

)求這50個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

)根據(jù)樣本數(shù)據(jù),估算該校1200名學生共參加了多少次活動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBCD,下列條件:①∠B+DAC=90°;②∠B=DAC;=;AB2=BDBC.其中一定能夠判定ABC是直角三角形的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A,點B的坐標分別為(0,2),(-1,0),將△ABO繞點O順時針旋轉,若點A的對應點A′的坐標為(2,0),

(1)則點B的對應點B′的坐標為_____;

(2)畫出旋轉后的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線y=﹣x+2x軸交于點B,與y軸交于點C,二次函數(shù)y=﹣+bx+c的圖象經過B,C兩點,且與x軸的負半軸交于點A.

(1)求二次函數(shù)的表達式;

(2)如圖1,點D是拋物線第四象限上的一動點,連接DC,DB,當SDCB=SABC時,求點D坐標;

(3)如圖2,在(2)的條件下,點QCA的延長線上,連接DQ,AD,過點QQPy軸,交拋物線于P,若∠AQD=ACO+ADC,請求出PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

同步練習冊答案