【題目】已知關于x的一元二次方程有實數(shù)根.

(1)求m的值;

(2)先作的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式.

【答案】(1)m=1;(2)y=-x2-4x-2.

【解析】

(1)由題意△≥0,列出不等式,解不等式即可

(2)畫出翻折.平移后的圖象,根據(jù)頂點坐標即可寫出函數(shù)的解析式

1)對于一元二次方程x2﹣(m+1)xm2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2

∵方程有實數(shù)根,∴﹣(m﹣1)2≥0,∴m=1.

(2)由(1)可知yx2﹣2x+1=(x﹣1)2,圖象如圖所示

平移后的解析式為y=﹣(x+2)2+2=﹣x2﹣4x﹣2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程x2﹣4x+k=0有兩個不相等的實數(shù)根

(1)求k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0x2+mx﹣1=0有一個相同的根,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(元)與產(chǎn)品日銷售量(元)間的關系如下:

(元)

12

15

18

21

24

(件)

28

25

22

19

16

日銷售量是銷售價的一次函數(shù).

1)求出日銷售量(件)與銷售量(元)的函數(shù)關系式.

2)要使每日的銷售利潤200元,每件產(chǎn)品的銷售應定為多少元?進貨成本多少元?

3)選作:要使每日的銷售的利潤最大,每件產(chǎn)品的銷售價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,D、EAB、BC上兩點,將ABC沿DE折疊,使點B落在AC邊上點F處,并且DFBC,若CF=3,BC=9,則AB的長是( )

A. B. 15C. D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,連接AC,做ABC的外接圓⊙O,延長EC交⊙O于點D,連接BD、AD,BCAD交于點F分,∠ABC=ADB

1)求證:AE是⊙O的切線;

2)若AE=12,CD=10,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于點、(點在點的左側(cè)),與軸交于點.將拋物線繞點旋轉(zhuǎn),得到新的拋物線,它的頂點為,與軸的另一個交點為.若四邊形為矩形,則,應滿足的關系式為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某華為手機專賣店銷售A型手機和B型手機的利潤為元,銷售A型手機和B型手機的利潤為.

求每臺A型手機和B型手機的利潤;

專賣店計劃購進兩種型號的華為手機共臺,其中B型手機的進貨量不低于A型手機的倍,設購進的A型手機臺,這臺手機全部銷售的總利潤為.

直接寫出關于的函數(shù)關系式為 的取值范圍是 ;

②該商店如何進貨才能使銷售總利潤最大?說明原因.

專賣店預算員按照中的方案準備進貨,同時專賣店對A型手機銷售價格下調(diào)元,結(jié)果預算員發(fā)現(xiàn)無論按照哪種進貨方案最后銷售總利潤不變,請你直接寫出的值是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了了解在校初中生閱讀數(shù)學文化史類書籍的現(xiàn)狀,隨機抽取了初中部部分學生進行研究調(diào)查,依據(jù)相關數(shù)據(jù)繪制成以下不完整的的統(tǒng)計圖表,請你根據(jù)圖表中的信息解答下列問題:

類別

人數(shù)

占總?cè)藬?shù)比例

重視

a

0.3

一般

57

0.38

不重視

b

C

說不清楚

9

0.06

1)求表格中a,bc的值,并補全統(tǒng)計圖;

2)若該校共有初中生2400名,請估計該校不重視閱讀數(shù)學文化史書籍的初中生人數(shù);

3)若小明和小華去書店,打算從A,BC,D四本數(shù)學文化史類書籍中隨機選取一本,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一本書籍的概率。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,A、B、CD為矩形的四個頂點,AD=4cmAB=dcm。動點E、F分別從點D、B出發(fā),點E1 cm/s的速度沿邊DA向點A移動,點F1 cm/s的速度沿邊BC向點C移動,點F移動到點C時,兩點同時停止移動。以EF為邊作正方形EFGH,點F出發(fā)xs時,正方形EFGH的面積為ycm2。已知yx的函數(shù)圖象是拋物線的一部分,如圖2所示。請根據(jù)圖中信息,解答下列問題:

1)自變量x的取值范圍是

2d=,m=,n=;

3F出發(fā)多少秒時,正方形EFGH的面積為16cm2?

查看答案和解析>>

同步練習冊答案