【題目】如圖,設(shè)D為銳角△ABC內(nèi)一點,∠ADB=∠ACB+90°,過點B作BE⊥BD,BE=BD,連接EC.
(1)求∠CAD+∠CBD的度數(shù);
(2)若,
①求證:△ACD∽△BCE;
②求的值.
【答案】(1)90°;(2)①見解析;②
【解析】
(1)根據(jù)三角形外角的性質(zhì)進行解答即可;
(2)①根據(jù)兩邊成比例且夾角相等即可證明△ACD∽△BCE;
②先根據(jù)等腰直角三角形的性質(zhì)得:,證明△ACB∽△DCE,得,代入所求的式子可得結(jié)論.
(1)解:如圖1,延長CD交AB于F,
∵∠ADF=∠CAD+∠ACD,∠BDF=∠CBD+∠BCD,
∴∠ADB=∠ADF+∠BDF=∠CAD+∠CBD+∠ACB,
∵∠ADB=∠ACB+90°.
∴∠CAD+∠CBD=90°;
(2)①證明:如圖2,∵∠CAD+∠CBD=90°,∠CBD+∠CBE=90°,
∴∠CAD=∠CBE,
∵ACBD=ADBC,BE=BD,
∴,
∴△ACD∽△BCE;
②解:如圖2,連接DE,
∵BE⊥BD,BE=BD,
∴△BDE是等腰直角三角形,
∴
∵△ACD∽△BCE,
∴∠ACD=∠BCE,,
∴∠ACB=∠DCE,
∴△ACB∽△DCE,
∴,
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017寧夏)在邊長為2的等邊三角形ABC中,P是BC邊上任意一點,過點 P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足.
(1)求證:不論點P在BC邊的何處時都有PM+PN的長恰好等于三角形ABC一邊上的高;
(2)當(dāng)BP的長為何值時,四邊形AMPN的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是圓周上一點,連接AC、BC,以點C為端點作射線CD、CP分別交線段AB所在直線于點D、P,使∠1=∠2=∠A.
(1)求證:直線PC是⊙O的切線;
(2)若CD=4,BD=2,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)的圖象與函數(shù)的圖象相交于點A,并與軸交于點C,S△AOC=15.點D是線段AC上一點,CD:AC=2:3.
(1)求的值;
(2)求點D的坐標;
(3)根據(jù)圖象,直接寫出當(dāng)時不等式的的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是邊長為2的正方形ABCD的邊BC上的一動點(不與端點重合),將△ABE沿AE翻折至△AFE的位置,若△CDF是等腰三角形,則BE=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)求過點A,B的直線的函數(shù)表達式;
(2)在x軸上找一點D,連接BD,使得△ADB與△ABC相似(不包括全等),并求點D的坐標;
(3)在(2)的條件下,如P,Q分別是AB和AD上的動點,連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ與△ADB相似?如存在,請求出的m值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店的員工與老板齊心協(xié)力,在2019年的經(jīng)營中,每月的利潤都在不斷增加.該服裝店的老板每季度都讓員工總結(jié)經(jīng)驗與不足,下面是策劃師與銷售品牌服裝的員工在第二季度總結(jié)的一部分.
策劃師的發(fā)言:第四月的利潤為50萬元,從第四月開始,第二季度的月增長率不變,第二季度的總利潤為182萬元.
銷售品牌的員工發(fā)言:銷售的品牌服裝在四月份中,進價為100元,售價為140元,每周銷售60件,由于該服裝進貨量少,因此,采用漲價銷售,每件漲1元時,平均每周少售2件,每周盈利2250元.
請根據(jù)總結(jié)解答相關(guān)的問題:
(1)求第二季度月增長率;
(2)品牌服裝每周盈利2250元時,每件售價應(yīng)該是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點M(n,﹣n )在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點M作MN⊥x軸于點N,則下列點在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P(x0,m),Q(1,n)在二次函數(shù)y=(x+a)(x﹣a﹣1)(a≠0)的圖象上,且m<n下列結(jié)論:①該二次函數(shù)與x軸交于點(﹣a,0)和(a+1,0);②該二次函數(shù)的對稱軸是x=; ③該二次函數(shù)的最小值是(a+2)2; ④0<x0<1.其中正確的是_____.(填寫序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com