【題目】如圖,設(shè)D為銳角ABC內(nèi)一點,∠ADB=ACB+90°,過點BBEBD,BE=BD,連接EC

1)求∠CAD+CBD的度數(shù);

2)若,

①求證:ACD∽△BCE

②求的值.

【答案】(1)90°;(2)①見解析;②

【解析】

1)根據(jù)三角形外角的性質(zhì)進行解答即可;

2)①根據(jù)兩邊成比例且夾角相等即可證明△ACD∽△BCE;

②先根據(jù)等腰直角三角形的性質(zhì)得:,證明△ACB∽△DCE,得,代入所求的式子可得結(jié)論.

1)解:如圖1,延長CDABF,

∵∠ADF=∠CAD+ACD,∠BDF=∠CBD+BCD,

∴∠ADB=∠ADF+BDF=∠CAD+CBD+ACB,

∵∠ADB=∠ACB+90°

∴∠CAD+CBD90°;

2)①證明:如圖2,∵∠CAD+CBD90°,∠CBD+CBE90°

∴∠CAD=∠CBE,

ACBDADBC,BE=BD,

,

∴△ACD∽△BCE

②解:如圖2,連接DE,

BEBD,BEBD

∴△BDE是等腰直角三角形,

∵△ACD∽△BCE,

∴∠ACD=∠BCE,

∴∠ACB=∠DCE,

∴△ACB∽△DCE,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017寧夏)在邊長為2的等邊三角形ABC中,PBC邊上任意一點,過點 P分別作 PMA B,PNAC,M、N分別為垂足.

1)求證:不論點PBC邊的何處時都有PM+PN的長恰好等于三角形ABC一邊上的高;

2)當(dāng)BP的長為何值時,四邊形AMPN的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點C是圓周上一點,連接AC、BC,以點C為端點作射線CDCP分別交線段AB所在直線于點D、P,使∠1=∠2=∠A

1)求證:直線PCO的切線;

2)若CD4,BD2,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)的圖象與函數(shù)的圖象相交于點A,并與軸交于點CSAOC=15.點D是線段AC上一點,CDAC=23

1)求的值;

2)求點D的坐標;

3)根據(jù)圖象,直接寫出當(dāng)時不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是邊長為2的正方形ABCD的邊BC上的一動點(不與端點重合),將ABE沿AE翻折至AFE的位置,若CDF是等腰三角形,則BE=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標分別為A(﹣30),C1,0),tan∠BAC=

1)求過點A,B的直線的函數(shù)表達式;

2)在x軸上找一點D,連接BD,使得△ADB△ABC相似(不包括全等),并求點D的坐標;

3)在(2)的條件下,如P,Q分別是ABAD上的動點,連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ△ADB相似?如存在,請求出的m值;如不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店的員工與老板齊心協(xié)力,在2019年的經(jīng)營中,每月的利潤都在不斷增加.該服裝店的老板每季度都讓員工總結(jié)經(jīng)驗與不足,下面是策劃師與銷售品牌服裝的員工在第二季度總結(jié)的一部分.

策劃師的發(fā)言:第四月的利潤為50萬元,從第四月開始,第二季度的月增長率不變,第二季度的總利潤為182萬元.

銷售品牌的員工發(fā)言:銷售的品牌服裝在四月份中,進價為100元,售價為140元,每周銷售60件,由于該服裝進貨量少,因此,采用漲價銷售,每件漲1元時,平均每周少售2件,每周盈利2250.

請根據(jù)總結(jié)解答相關(guān)的問題:

1)求第二季度月增長率;

2品牌服裝每周盈利2250元時,每件售價應(yīng)該是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點Mn,﹣n在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點MMNx軸于點N則下列點在線段AN的是( 。

A. ((k﹣1)n,0) B. ((k+n,0)) C. ,0) D. ((k+1)n,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點Px0m),Q1,n)在二次函數(shù)y=(x+a)(xa1)(a≠0)的圖象上,且mn下列結(jié)論:①該二次函數(shù)與x軸交于點(﹣a,0)和(a+1,0);②該二次函數(shù)的對稱軸是x; ③該二次函數(shù)的最小值是(a+22; 0x01.其中正確的是_____.(填寫序號)

查看答案和解析>>

同步練習(xí)冊答案